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ABSTRACT 
The concept of „conservatism‟ in game design has been a subject of debate for a number 

of years. This „conservatism‟ is linked to „player-centricity‟ in design. Such player-

centricity can be suggested to place a limit on the fulfilment of high level cognitive player 

needs. A framework is thus proposed for disruptive game design that focuses on the 

player and how they learn about game components. It actively seeks the disruption of 

knowledge construction as well as the recall process used in applying that knowledge to 

new situations. Such disruption aims to increase the player‟s cognitive engagement with 

the game in a way that does not entirely prevent them from understanding the game, 

which may cause frustration or confusion. This design approach thus aims to provide 

greater potential for fulfilment of a player‟s high level cognitive needs. The framework is 

applied to a small case study of the game Amnesia: A Machine for Pigs (The Chinese 

Room, 2013) that was designed and developed utilising its principles. 

Keywords 
Schema, disruptive game design, cognition, memory, development-led research. 

‘CONSERVATISM’ IN GAME DESIGN AND THE NEEDS OF PLAYERS 
The dominant trend within contemporary computer game design is suggested to be one of 

player-centric and monologic design (Wilson and Sicart, 2009, 2010), placing the 

fulfilment of the player‟s needs and desires in the position of highest importance and also 

ensuring a high degree of accessibility for players. This trend is suggested to represent an 

“intrinsic conservatism” (Wilson and Sicart, 2010, p.41) within the medium.  

The notion of „conservatism‟ has been identified by academic and industry professionals 

for a number of years and remains a current debate. In 1998, Costikyan (1998) suggested 

that risk-averse publishers subsequently “constrained [the] imaginations” of designers, 

limiting them to the use and reuse of particular game concepts if they were to 

successfully attain a publishing deal. At this time, Herz (1998) discussed a conservatism 
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“rut” and suggested the cause to be too much focus being placed on technological 

advances, while advances in the field of design suffered. Herz‟s article has recently been 

republished (Herz, 2013) with emphasis placed on the ongoing relevance of the issues 

originally raised. Dymek (2010, 2012) echoes Herz‟s suggestion of design innovation 

suffering due to a heavy focus on technological advancement in his discussion of what he 

terms specifically a “creative conservatism” (2010, p.46). 

„Conservatism‟ as identified by Wilson and Sicart (2010) is suggested to be evident at a 

design theory level, existing across a range of current game design literature and thus 

codified as „best practice‟ in terms of what designers should aim to achieve in their 

games. It is suggested that design is the process of fulfilling player desires and ensuring 

usability and accessibility of the game by placing the player at the centre of the game 

experience (i.e. player-centric design). Adams (2010, p.30) provides a similar supporting 

definition, suggesting that the designer has both “a duty to entertain” as well as a duty “to 

build the game to meet the player‟s desires and preferences for entertainment”. 

From the perspective of the player, rather than the designer, the notion of „conservatism‟ 

may be considered in terms of how players construct knowledge about a game as they 

play, how that knowledge enables ongoing in-game learning and thus, how it enables 

successful continued play. This knowledge construction process can be understood using 

Crawford‟s (2003, p.115) definition of an incremental accretive design process as a basis. 

Crawford suggests this process as one of designing by taking existing game designs and 

making minor adjustments or additions to them. This can be suggested to extend to the 

process of knowledge construction during gameplay in the form of incremental accretive 

learning. If only minor adjustments or additions have been made to a game as compared 

to other available games then the amount of new knowledge construction, or learning, 

required by the player will be similarly minimal (i.e. the game is more readily accessible). 

Player-centric, accessible games present players with a simple „starting state‟ to which 

other game mechanics are incrementally added as the player discovers them or the game 

introduces them. These newly discovered mechanics form a more and more complex 

„play state‟ via incremental accretion. The Metroid or Zelda games (Nintendo, 1986-2010 

and Nintendo, 1986-2013) epitomise this approach, providing players with very limited 

initial mechanics with which to progress, gradually allowing the discovery of new items, 

weapons and tools that incrementally build on the previous play state. However, given the 

significant importance of fulfilling the needs and desires of players that is described in 

definitions of player-centric design, it is necessary to consider precisely what „needs‟ and 

what „desires‟ such games may actually be capable of fulfilling. 

 

Figure 1: Hierarchy of Needs, following Schell (2008, p.127) and 

Maslow (1943). 
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Schell‟s (2008) collection of conceptual „lenses‟ for perceiving the game design process 

includes “The Lens of Needs” (2008, p.127) which utilises the hierarchy of human needs 

(Figure 1) originally proposed by Maslow (1943). Schell suggests that many common 

game activities are focused on the needs of „achievement‟ and „mastery‟ of skills (e.g. to 

jump, dodge and shoot enemies in Metroid or to use the available tools to navigate the 

environment in Zelda), placing them at level four of the hierarchy, „self-esteem‟. 

However, in order to ensure the fulfilment of these needs, the player is only ever 

challenged, as Wilson and Sicart (2010, p.2) state, “within the limits of what an implied 

player model suggests”. The challenge likely requires incremental accretive learning as 

opposed to more significant cognitive engagement in the form of substantive „new‟, non-

incremental learning. Higher level needs (i.e. those at level five, „self-actualisation‟) that 

are predominantly cognitive in nature are therefore potentially less likely to be fulfilled 

through such „limit-bounded‟ challenges in games. 

This paper considers how it may be possible to retain the underlying principle of player-

centric design (i.e. player need fulfilment) but to place more focus on fulfilment of high 

level cognitive needs alongside fulfilment of the achievement and task-mastery needs. 

The aim is thus to encourage a greater degree of cognitive engagement through 

challenging players to engage more frequently in „new‟, non-incremental learning during 

gameplay and importantly, to sustain this challenge throughout a game without needing 

to construct elaborate new game components. This position is presented via disruptive 

game design (Howell, 2011). This is a design approach that emphasises ways in which 

previously learned game information, including how such information is stored and 

recalled from memory, can be co-opted to create situations in which players are 

challenged to cognitively engage with the process of understanding and choosing an 

action, rather than simply challenged to demonstrate their skilful performance of actions. 

This approach encourages frequent „new‟ learning as well as active re-learning and 

reconstruction of understanding of game components throughout a game. 

A SIMPLE MODEL OF KNOWLEDGE CONSTRUCTION AND RECALL 
In order to design in a way that influences how players construct knowledge during 

gameplay (i.e. „ludic knowledge‟) and how they acquire an understanding of game 

components, a cognitive basis for knowledge processing and use is necessary. Being such 

a widely researched area, there are a range of available models that could be used as such 

a basis. In the context of ludic knowledge construction, Mayer‟s (2001) model of 

multimedia learning provides a particularly relevant example of such a basis (Figure 2). A 

key component in this model is the active integration of prior learned multimodal 

knowledge (both visual and auditory) into working memory (Baddeley, 1992, 2007) 

alongside incoming information from the game. The combination of each of these types 

of knowledge allows the player to understand what they perceive during gameplay. 

 

Figure 2: Model of multimedia learning, following Mayer (2001). 
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However, the contents and structure of long-term memory and the method of information 

recall through which prior knowledge is integrated are less clearly defined. It is not 

suggested for example how information is encoded into long-term memory, nor how it is 

stored and organised. Nor is it defined how working memory selects and integrates 

appropriate information for the current situation from the large amount of knowledge 

potentially available. This is vital information that is required if the content of long-term 

memory and the process of selection will be affected via disruptive design. 

MULTIMODAL STRUCTURE OF LONG-TERM MEMORY  
Tulving (1985) proposed the idea of the existence of multiple different memory types 

within long-term memory. These types are defined as procedural memory, semantic 

memory and episodic memory and these definitions remain in current usage within a 

range of psychological work (Crittenden, 2013, Pitel et al., 2007, Weiner, Healy and 

Proctor, 2012). At a high level, procedural memory stores information regarding actions 

and processes; semantic memory stores concepts related to objects or phenomena and the 

properties of those objects/phenomena; episodic memory stores memories of personally 

experienced events, which may include elements of both other types of memory 

combined. Episodic memory is organised in relation to spatiotemporal information (it 

contains information relating to when and where, as well as what), while procedural and 

semantic memory store information independently of contextual information (Table 1). 

Integration of prior knowledge from long-term memory may draw upon all of these 

memory types to differing extents. If one is learning to perform a task, such as using a 

new input device to control a character on a screen, then recall and integration may come 

primarily from procedural memory. Alternatively, if one is learning factual or conceptual 

information, such as character attributes, weapon and armour statistics or particular 

weaknesses of enemies in a role-playing game, recall and integration may come primarily 

from semantic knowledge. Each of these types of knowledge construction are informed 

and contextualised further by any relevant prior knowledge of similar personal 

experiences (episodic memory), such as the last time the person learned how to use a new 

device, or the last role-playing game that they played. However, recall and integration of 

prior knowledge must be driven by a process that prioritises the most relevant 

information and ignores less relevant information. Such a process must be facilitated by 

an organisational structure within each of these memory types. 

 
Type of 

Information 
Gameplay Information Example 

Procedural 

Memory 

Actions, 

Processes 

The pattern of attacks required to defeat an enemy. 

The sequence of button inputs required to perform attacks. 

Semantic 

Memory 
Facts, Concepts 

The concept of a generic game „enemy‟. 

The properties of a particular game enemy instance. 

Episodic 

Memory 

Personal Events, 

Personal 

Experiences 

Personal memory of fighting a particular enemy in a 

particular game. 

 

Table 1: Memory types and example stored information. 
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SCHEMA-BASED ORGANISATION OF LONG-TERM MEMORY 
While organisation of long-term memory remains a debated topic, schema theory 

provides a particularly useful structure with which to consider learning during gameplay 

and in turn, disruptive game design. 

Schema theory was introduced by Bartlett (1932) into „mainstream‟ psychology and 

further built upon by a range of other theorists (Minsky, 1974, Neisser, 1976, Piaget, 

1970, Rumelhart and Norman, 1976, Schank and Abelson, 1977). The idea of a mental 

schema itself is now most often perceived as a cognitive structure that contains patterns 

or behaviours in an organised fashion that can be used to help understand interactions 

with the world (Plant and Stanton, 2013). Neath (1998, p.328) and Arbib (1998, p.43) 

also note the key role that mental schemas play in forming expectations about aspects of 

the world, which may influence decisions and behaviours. That is, expecting a particular 

response from the world (or game) following an action may predispose an individual to 

deciding to perform that action. Such predisposition provides one possible focus for 

disruptive game design via the disruption of cause (input) and expected effect. 

Schematic Organisation of Procedural Memory 
Schematic organisation within the three memory types differs slightly due to the different 

information being stored. Procedural schemas (Turner, 1994) are hierarchical or linearly 

arranged plans of action that are carried out in response to a type of situation (loosely 

referred to as a „stimulus‟ in this context).  

Procedural schemas contain only directly relevant information and are not contextualised 

with spatiotemporal information. The process is stored as generic „process‟ and „action‟ 

information in a linear structure, with two hierarchical levels that describe high level 

processes supported by lower level actions (Figure 3). Recall and integration of this prior 

knowledge alone would be meaningless however (outside of a gameplay session, for 

example) and thus it must be integrated alongside other semantic and episodic 

information that can provide context for the process and actions. 

Schematic Organisation of Semantic Memory 
Within semantic memory, a similar hierarchical organisation of information is proposed 

although at a more complex level. A schema in semantic memory is simultaneously both 

a store for abstract concepts and facts (properties) related to them, as well as specific 

information regarding concept instances of that abstract concept (Cohen and Murphy, 

1984, Komatsu, 1992). Figure 4 provides an example of this using the „Firearm‟ concept. 

A 'Firearm' schema, may contain abstract properties such as 'has a trigger', 'requires 

ammunition' and 'requires aiming skill', along with specific concept instances that fit the 

abstract schematic definition, such as 'Walther P99', '.44 Magnum' or 'Laser Rifle'. These, 

in turn would have instance-specific knowledge attached to them, such as the 'Laser Rifle' 

being 'fictional' (a property which itself may be stored elsewhere in memory as a high-

level schema) and also 'requires recharging'. These specific properties may operate in 

 

Figure 3: A procedural schema for making Mario move towards, 

jump onto and then enter a pipe in Super Mario World (Nintendo 

EAD, 1990). 
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addition to the inherited abstract properties within the schema by providing instance 

specific detailed information on a property, such as the specific type of ammunition that 

is required. They may also temporarily overwrite them such as the 'requires recharging' 

property overwriting the 'requires ammunition' property for the particular concept 

instance of the 'Laser Rifle'. 

This structure handles abstract concepts as well as physical object-based concepts such as 

'Firearms'. An abstract 'game' schema for example contains factual knowledge that an 

individual has stored about all types of games. This may have embedded within it less 

abstracted (but still high-level) schema relating to 'digital games', 'board games', 'live-

action role-playing games' and so forth. Then, specific concept instances of these types of 

game will be contained within these sub-schemas. The embedding of schemas in this 

manner may potentially be many more 'layers' deep but will contain specific concept 

instances at the lowest (least abstracted) level. Figure 4 for example represents only a 

small portion of the larger schema and concept network. A „Firearm‟ is a sub-schema of 

„Ranged Weapons‟ which in turn is a sub-schema of „Weapons‟, each of which would 

also contain abstract properties. As noted with procedural information, recall of semantic 

information alone is unlikely to be particularly useful, unless the game requires simplistic 

recall and statement of factual information (e.g. the penultimate stage of Banjo Kazooie 

(Rare, 1998) in which players must complete a game-based quiz). It is more likely to be 

recalled and integrated along with other memory types. 

 

Figure 4: Schematic organisation of concepts in semantic memory. 
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Schematic Organisation in Episodic Memory 
Episodic memories (sometimes referred to as „episodes‟) are „snapshots‟ of lived, 

spatiotemporally organised and contextualised events and experiences. Schemas drawn 

from other memory types during the formation of episodic memories contribute to the 

formation of the memory by being „baked in‟ to the episodic memory. This suggestion is 

supported by the work of Brewer and Treyens (1981). This work also supports the idea 

that an individual‟s existing prior knowledge at the time of an episodic memory‟s 

formation has an impact on what information is selected for storage in that episodic 

memory and thus, what information is available for later recall.  

For example, recalling seeing a computer in a particular office because offices tend to 

contain computers, despite that office not containing one. This example of recalling a 

particular episodic memory has been influenced by the abstract „office schema‟. During 

the recall and internal reconstruction of that memory, the general contents of the „office 

schema‟ are incorrectly incorporated alongside specific episodic memory contents. The 

reconstructive nature of episodic memory is supported by a range of literature, for 

example in studies of eyewitness testimony and memory in legal proceedings (Howe, 

2013, Loftus, 1981). Episodic memories therefore may be accurate internal 

representations of the original event, but may also be prone to recall errors introduced 

through the recall of information that is schema-relevant but not memory instance 

relevant (i.e. that has been „baked-in‟ to the encoded memory). 

Each episodic memory instance can be perceived as itself being a high level schema, as 

the information contained within each can be recalled and used to inform understanding 

of future similar (or apparently similar) events. This functionality is identical to schema-

based recall informing understanding of concepts stored in semantic memory when they 

are encountered in future. If an episodic memory contains inaccurate information 

however, then not only is recall of that memory affected but so too is the interpretation of 

any future experiences encountered that rely on the recall of that information. 

Expectations based on inaccurate information may lead to incorrect selection of 

appropriate actions or misunderstanding of meaning in future experiences, requiring those 

expectations to be updated through new learning.  

Episodic memory as separate from semantic memory is in some ways problematic. The 

apparent interdependence of episodic and semantic memory storage suggests that viewing 

them as entirely separate may not be an accurate interpretation (McKoon, Ratcliff and 

Dell, 1986). However, as Menon (2002) states, the interdependence may be necessary but 

clearly the functionality of each type of memory is different, which supports the 

perception of the two types as at least in some ways separated. 

SCHEMA-BASED MODEL OF LUDIC KNOWLEDGE CONSTRUCTION 
A schema-based model of ludic knowledge construction that more clearly defines the role 

of the integration of prior knowledge into understanding and the decision making process 

is now proposed (Figure 5). With reference to Mayer‟s (2001) model, sensory memory is 

retained to an extent in the form of sensory perception. Working memory is split into two 

primary components. Firstly, the Central Executive (CE), as per Baddeley‟s (1992) model 

of working memory, which acts as a decision making component. Secondly, the 

Multimodal Situational Schema Instantiation (MSSI) is then added, which draws together 

the multimodal prior knowledge stored in long-term memory.  
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The CE is a process coordinator, involved in planning and decision making, handling 

„novel‟ or demanding situations (e.g., the introduction of a new, more powerful enemy 

during a game) and in controlling or limiting habitual or „conditioned‟ responses to 

situations. The CE operates on the MSSI. The MSSI provides all necessary information 

(procedural, semantic, and episodic) to make sense of and respond to the current situation 

presented to the player. The MSSI itself is informed by the multimodal contents 

(procedural, semantic, and episodic; visual, auditory etc.) of the three individual long-

term memory stores. The MSSI can be equated to Neisser‟s (1976, p.56) statement that 

“the schema is not only the plan, but also the executor of the plan. It is a pattern of action, 

as well as a pattern for action”. The MSSI is prone to a level of inaccuracy (in the same 

manner as episodic memory and recall is) based on the information that it is drawing 

from memory in relation to the perceived stimulus. 

However, perception, thought and action can be viewed as an ongoing cycle. As Fuster 

(in Alloway and Alloway, 2013) explains, “the perception/action cycle is the circular 

cybernetic process of information between the human organism and its environment”. 

Disruptive design is also able to focus on the disruption of this cycle itself, as well as the 

disruption of the contents of the MSSI or the expectations that stem from it. The schema-

based model can be viewed as representing the flow of information and the activation of 

model components through a single cycle. „Stimulus‟ as stated previously is used here to 

indicate an instigator to action. Stimuli generally originate from outside of the body (i.e., 

from objects such as the game), although a stimulus may also be a lack of stimulus, as in 

a sensory deprivation environment. 

Further to stimuli originating „naturally‟ from the environment, the observed 

consequences of an action performed by the individual is also a stimulus (e.g. the 

observed outcome of attacking an enemy‟s weak spot and the observed outcome of 

attacking their armoured areas). In this case, the stimulus may inform further action, such 

 

Figure 5: Schema-based model of player learning. 
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as to keep attacking the weak spot, or to stop attacking the armoured areas, but may also 

inform knowledge construction and modification (i.e. learning or enhancing 

understanding) in all three memory stores. This could be procedural knowledge 

construction based on the success or failure of previous actions, semantic knowledge 

construction based on newly perceived concepts and concept instance properties, and 

episodic knowledge construction related to the particular event just experienced. 

A FRAMEWORK FOR SCHEMA-BASED DISRUPTIVE GAME DESIGN 
Within the schema-based model, three particular modalities of potential disruption can be 

identified. Encoding disruption operates on the initial encoding of information regarding 

a new stimulus. Purposeful presentation of ambiguous stimuli (e.g. a previously unheard 

sound without an obvious source) to a player requires initial encoding to be based on 

existing knowledge. As previously described, such existing knowledge may be abstract 

(e.g. the „office schema‟ example) and thus lead to inaccuracies in the newly encoded 

memory. Future encounters with that stimulus thus potentially require a greater degree of 

re-learning. Encoding disruption may also be achieved by preventing a player focusing 

attention on a stimulus (i.e. distracting the player with other stimuli). 

Recall disruption operates on information recalled from long-term memory regarding the 

perception of game stimuli in terms of their properties, or the context in which they are 

presented. Purposely presenting players with previously encountered stimuli that behave 

differently or that have otherwise different properties to previous encounters (e.g. a non-

player-character that unpredictably switches between „friendly‟ and „hostile‟) increases 

the likelihood of recalling information that is expected to be accurate but in fact is not. 

This will potentially require a greater degree of cognitive engagement regarding decisions 

made in relation to the stimulus, as well as potentially require frequent re-learning. 

Lastly, action plan disruption operates on the results of player inputs. If initial encoding 

has not been disrupted and recall has not been disrupted, the MSSI should in theory 

contain an appropriate „action plan‟. This action plan can be disrupted if the result of an 

action based on it does not correspond to previously experienced results of that action. 

This form of disruption has the potential to be particularly effective. Players may need to 

re-evaluate their understanding of the action they selected in a number of ways; whether 

they misinterpreted the stimulus, whether they decided upon an incorrect response, or 

whether they performed an appropriate response but the performance itself was incorrect. 

These three modalities of disruption may operate on any of the three long-term memory 

stores previously defined following Tulving‟s (1985) work. Procedural disruption may 

target knowledge of appropriate actions and processes applicable to a perceived stimulus. 

Semantic disruption may target knowledge of facts, concepts and concept properties and 

thus, the semantic understanding of objects and phenomena in the world. Episodic 

disruption may target lived experiences and include elements of both procedural and 

semantic disruption but contextualised with spatiotemporal information.  

The MSSI formation provides the primary mechanism through which disruptive game 

design has an impact on the player‟s gameplay experience. The MSSI is comprised of 

multimodal prior knowledge drawn from the different memory stores that attempts to 

provide the most appropriate and accurate context for understanding and responding to 

the current situation. Identification and recall of knowledge that is „most appropriate‟ and 

„most accurate‟ for a given situation must also be defined in order to present a usable 

framework for disruptive game design. This identification and recall process can be 
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understood from the perspectives of both encoding specificity (Einstein and McDaniel, 

2010, Tulving and Thomson, 1973) and spreading activation (Collins and Loftus, 1975).  

Encoding specificity suggests that knowledge is stored along with contextual information 

in episodic memory and that recall is improved if the current context in which recall is 

occurring matches the contextual information stored at the time of encoding.  Spreading 

activation suggests that stored information in memory is „activated‟, or recalled, through 

a series of associative links between schemas and concepts. The initial stimulus activates 

directly relevant stored information, which in turn activates closely associated 

information, spreading outwards from the original activation point with activation 

strength decreasing the further from that point the activation process spreads. 

With this context-dependency and activation process in mind, ludic knowledge 

construction and recall can be categorised into the construction and recall of three broad 

ludic knowledge types. Knowledge related to the current game being played can be 

termed intraludic knowledge; for example, the properties of a particular gun in a 

particular game. Knowledge related to other games can be termed transludic knowledge; 

for example, more abstract knowledge relating to the „gun‟ concept across multiple 

games. Lastly, knowledge that is not related to games can be termed extraludic 

knowledge; for example, knowledge regarding the meaning of the word „gun‟ abstracted 

from any specific object or ludic context. These ludic knowledge types exist within each 

of the three long-term memory stores, resulting in nine categories of memory that can 

provide knowledge that informs the MSSI during a single cycle. These categories are 

defined and further explained, with examples, using a short case study of Amnesia: A 

Machine for Pigs (The Chinese Room, 2013). 

Case Study of Amnesia: A Machine for Pigs 
Amnesia: A Machine for Pigs (AAMFP) is a sequel to Amnesia: The Dark Descent 

(Frictional Games, 2010) (ATDD). AAMFP is a narrative driven, first-person survival 

horror game with gameplay focused on exploration of the environment to uncover and 

piece together the game‟s story, while attempting to avoid enemies using stealth. Using 

two components of AAMFP, a game-based application of the previously described 

memory categories is explained, followed by examples of the implementation of different 

modalities of disruption. 

Knowledge Types in Memory Relating to Game Mechanics 
A key mechanic that enables the avoidance of enemies in AAMFP is a Victorian electric 

lantern that the player-character carries. Prior knowledge from different memory 

categories can be applied when attempting to understand the functionality and use of this 

mechanic. These categories, combining memory stores and ludic knowledge types, are 

summarised in Table 2, with examples of stored knowledge. 

When players encounter the „Lantern‟ mechanic in AAMFP for the first time, knowledge 

in the TRANS- and EX- categories will be recalled to provide a context with which to 

understand the intraludic mechanic. For example, from TRANS-P knowledge, the player 

may easily transfer understanding of the ability to equip and un-equip the lantern by 

pressing a key, as in other games. Those players with TRANS-P knowledge acquired 

through playing ATDD specifically (TRANS-E knowledge) may further transfer 

understanding of the default key with which to do this, as both games utilise the same 

control scheme. This requires minimal new learning as knowledge can readily be 

transferred from TRANS- categories and found to be effective in selecting appropriate 
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Intraludic 

(in a specific game) 
Transludic 

(in other games) 
Extraludic 

(outside of games) 

Procedural 

 

(Knowledge 

of how to…) 

INT-P 

… equip/un-equip the 

lantern in AAMFP 

and the key required 

to do so. 

TRANS-P 

…use similar mechanics 

in other games, such as 

equipping/un-equipping 

the similar lantern in 

ATDD. 

EX-P 

… use a lantern in the 

real-world. 

May also include 

knowledge of using 

similar objects (such as a 

torch) in the real-world. 

Semantic 

 

(Knowledge 

of Concepts 

and Concept 

Properties…) 

INT-S 

…(e.g. within the 

player‟s „lantern‟ 

schema, a concept 

instance for the 

„AAMFP in-game 

lantern‟ with 

associated concept 

properties). 

TRANS-S 

… acquired in other 

games (e.g. lanterns in 

other games may have 

the property „requires 

fuel‟, which AAMFP‟s 

does not). 

EX-S 

…acquired outside of 

games (e.g. a specific 

concept instance for „my 

torch‟, with properties 

such as „requires a 9V 

battery‟, or „has an 

adjustable beam‟). 

Episodic 

 

(Collections 

of 

knowledge…) 

INT-E 

…relating to specific 

instances of using the 

lantern within 

scenarios in AAMFP. 

TRANS-E 

…relating to using 

similar mechanics in 

other games in particular 

instances. 

EX-E 

…relating to the process 

of interacting with 

similar non-game 

mechanisms or concepts 

in specific instances. 

 

Table 2: Memory categories storing different information relating to 

the ‘Lantern’ mechanic in AAMFP. 

 actions with minimal adaptation. For players unable to rely on TRANS- category 

knowledge (for example if this is the first game a player has ever played, or if the player 

has not had experience playing ATDD), EX- category knowledge is employed. This may 

include relatable but not identical knowledge, such as using a battery-powered torch in 

the real world. This may enable the transfer of key semantic information about the lantern 

as an object (e.g. it can be on or off, it produces light) but may not allow transfer of 

relevant procedural knowledge, as a torch is not turned on and off by pressing a key on a 

keyboard. Once a player has encountered the „Lantern‟ mechanic once, INT- category 

knowledge begins to form and be refined with experiences encountered as the player 

progresses through the game.  

Encoding Disruption could be achieved by presenting players with game components that 

are challenging to contextualise when first encountered through reliance on TRANS- and 

EX- category knowledge transfer. Changing the properties or presentational context of 

seemingly established components within the same game (thus disrupting INT- category 

knowledge) provides a basis for Recall Disruption and, potentially, Action Plan 

disruption as well if the changed component responds differently to player actions 

previously performed towards it. 

Knowledge 

Type 

Memory 

Store 

Knowledge 

Type 

Memory 

Store 
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Previously (Howell, 2011, p.7) it was suggested that disruptive game design may aim to 

make small changes to a large number of different game components, or make large 

changes to a small number of different game components. This suggestion hides an 

additional layer of complexity however. It is not merely the small or large changes made 

by the designer, nor is it the amount of changes made that are important. Rather, it is the 

perceived notable and/or lasting impact of the changes made, from the player‟s 

perspective, which is of particular interest. 

For example a disruptive design element may be minor in terms of the work required to 

implement it but may have a significant impact on the player during gameplay. Similarly, 

a disruptive design element may require comparatively more work to implement to 

achieve a less notable, or less long-lasting impact on the player. Each of these scenarios 

(as well as low workload, low impact, and high workload, high impact scenarios) has 

potential to be put to practical use with different aims in mind. The following examples 

demonstrate two such practical implementations within AAMFP. 

Disrupting Player Knowledge of Enemy-Proximity Warning Mechanic 
Other than performing the function of allowing the player to see in dark environments, 

the lantern also serves as a warning device that can alert the player to nearby enemy 

threats. It does this by flashing at different rates and intensities depending on enemy 

proximity. This particular mechanic may be contextualised by players using similar 

mechanics in other games (e.g. the radio in Silent Hill (Konami Computer Entertainment 

Tokyo, 1999) that emits static based on enemy proximity), but this relies on players 

having specific TRANS- category knowledge from specific games. Thus, it is likely that a 

degree of new learning will have to occur in order to initially integrate this AAMFP 

mechanic.  

However, once the mechanic is introduced and a range of INT- category knowledge has 

been formed, the game presents scenarios to the player which actively disrupt the „rules‟ 

of the mechanic as previously encountered (i.e. recall disruption; the disruption of 

established properties of a game component). The lantern begins to exhibit its flashing 

behaviour in areas that do not appear to contain an enemy threat. The link between enemy 

proximity and lantern flashing rates in some areas that do contain threats also becomes 

less clearly defined, with intense flashing not always meaning that an enemy is very close 

to the player, for example. These changes to the mechanic are presented in segments (as 

opposed to being „random‟) which means that players are potentially able to re-learn the 

„rules‟ (and thus reformulate their understanding) of the mechanic as they move between 

segments. Allowing players an opportunity to actively re-learn and form new knowledge 

is critical, even if the newly formed knowledge is only accurate for a short time. If 

knowledge is disrupted in a seemingly random manner, players may become frustrated 

due to perceiving any attempt to learn as futile.  

As identified in the schema-based model, different types of knowledge construction occur 

in relation to each of the three memory types (procedural, semantic and episodic). 

Disruption of knowledge increases the likelihood of different methods of knowledge 

construction needing to be undertaken by players. These can be defined using the terms 

provided by Rumelhart and Norman (1976, 1981); accretion, tuning and restructuring.  

Accretion-based knowledge construction as previously described is incremental, 

modifying existing stored information with minor adjustments or adding supporting 

information. Tuning-based knowledge construction occurs when the structure (rather than 
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just the content) of a schema network must be modified in order to support new 

information. Lastly, restructuring occurs when information cannot be satisfactorily 

accommodated through accretion or tuning and requires the creation of a new high-level 

schema specifically for the new information. Disruptive game design can thus be 

considered as an approach that encourages a greater number of occurrences of tuning and 

restructuring, rather than a reliance primarily on accretion-based learning, a property of 

„conservative‟ design. 

The enemy-proximity warning mechanic demonstrates a game component that 

encourages a low level of accretion-based knowledge construction (e.g. adding a new 

concept instance to the „lantern‟ schema to describe the „AAMFP in-game lantern‟) 

alongside more cognitively engaging tuning-based knowledge construction (e.g. linking 

the „AAMFP in-game lantern‟ concept instance to the „warning system‟ and „flashing 

light‟ concepts upon discovering that functionality during gameplay. 

The enemy-proximity warning mechanic is then an example of low workload, high 

impact disruption. The implementation of the mechanic, once the initial game code for 

detecting enemy proximity and handling the lantern flashing was in place, only required 

simple adjustments to parameters when players entered and exited different volumes 

within the game‟s environments. However, the impact of disrupting knowledge of this 

mechanic can be felt by players throughout the entirety of the game as players move 

between segments which manipulate the mechanic‟s „rules‟ in different ways. This 

demonstrates ongoing recall disruption and thus, ongoing restructuring, throughout the 

entire play time of the game. 

Disrupting Player Knowledge of Euclidean Space 
A second AAMFP example focused instead on high workload, high impact disruption can 

be identified in the occasional use of „impossible architecture‟. This takes the form of 

apparent non-Euclidean environments (whereby corridors, rooms, walls and doors shift 

their locations, or connect to one another in configurations that change and distort as the 

player progresses) and also, at a simpler level, objects and entities that appear and 

disappear seemingly without cause (what can be referred to as „object consistency‟). 

Shifting corridors occur only a few times during the entire game and only significantly 

affect the environment on one occasion, approximately half way through the game in the 

„Tunnels‟ level. This placement allows enough time for players to form apparently 

accurate schema-based intraludic knowledge regarding the nature of the physical, spatial 

properties of the game world. When faced with a situation in which corridors and rooms 

shift and reconfigure themselves, players are unable to use INT- category knowledge to 

contextualise it; a further example of recall disruption. They are unlikely to be able to use 

TRANS- category knowledge (although such architecture shifting is not wholly original 

and thus may have been experienced before in other games; see Antichamber (Bruce, 

2013) for example) and are unable to use EX- category knowledge because such 

behaviour is impossible in reality. This therefore requires significant re-learning of the 

physical laws of the game world and thus adjustment of INT- category knowledge. The 

change in physical properties of the game world is not based on any clear „rules‟ or 

contextualising information; there is no definitive in-game explanation for the change. 

Thus, the initial encoding of this new physical property knowledge is based on 

ambiguous information, providing an example of encoding disruption. This newly formed 

knowledge is now recalled to the MSSI during further gameplay. While such architectural 

shifting is not used to the same extent at any other point following this, the re-learned 
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knowledge creates expectations of it possibly occurring again, thus potentially 

influencing how players play from this point onwards. 

Disrupting knowledge of the spatial properties of the game world demonstrates a game 

component that has a high probability to require restructuring to occur in order to 

facilitate knowledge construction (e.g., if it is the first time (in their ludic and non-ludic 

experiences) that a player encounters the concept of „non-Euclidean‟ architecture). This 

example of disruption can be seen as high workload, as it requires significant work to 

implement within the game engine. It is high impact due to its disruption of multiple 

knowledge types (i.e. it cannot be immediately contextualised (by most players) using 

INT-, TRANS- OR EX- category knowledge). „Impact‟ more generally may be considered 

in terms of immediate gameplay impact (e.g. shifting architecture), lasting gameplay 

impact (e.g. consistently manipulating the parameters controlling the lantern mechanic), 

or lasting cognitive impact, such as changes being made to the player‟s expectations that 

influence future game experiences both in the current game being played and in other 

games that the player may play. 

CONCLUSION AND FUTURE WORK 
A proposed cognitive model and theoretical framework through which to implement a 

disruptive game design approach has been presented. This approach disrupts schema-

based player knowledge and expectations of in-game stimuli (i.e. anything in a game that 

requires a player to actively attempt to understand its meaning). This may include such 

things as game mechanics, game entities (e.g. weapons or enemies), the game‟s narrative, 

or an element thereof. The three modes of disruption identified operate on knowledge 

stored in the three long-term memory stores. The modes of disruption influence the 

player‟s ability to utilise varying degrees of intraludic, transludic and extraludic 

knowledge and thus have an impact on the methods of knowledge construction the player 

is required to perform during gameplay. The framework aims to offer a perspective for 

considering the broader concept of „conservatism‟ in game design by promoting games 

that require greater cognitive engagement from players via a higher rate of learning and 

re-learning, or re-evaluation, of knowledge during gameplay. This in turn provides a 

greater opportunity for such games to meet the higher level cognitive needs of players, 

than other „conservative‟, highly „player-centric‟ or highly „accessible‟ games. 

Ongoing work aims to analyse and assess the player-perceived and player-reported 

impact of the disruptive game design approach employed in the design and development 

of AAMFP. The results of this analysis will provide evidence as to the future potential 

use of such a design approach. There is also potential to investigate the concepts 

presented via the schema-based model of knowledge construction and recall (i.e. modes 

of disruption, ludic knowledge types and methods of knowledge construction during 

gameplay) as a means of analysing, rather than designing, games. Such analysis may 

provide insight into design issues in other games such as player frustration, confusion or 

misunderstanding of game components. 
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