
Proceedings of DiGRA 2022

© 2022 Authors & Digital Games Research Association DiGRA. Personal and educational classroom
use of this paper is allowed, commercial use requires specific permission from the author.

Born in Fair Haven: Procedural Generation
of Cultural Sign Systems

Craig Paul Green, Callum Nash, Jo Briggs
School of Design

Northumbria University
Newcastle-upon-Tyne, UK

craig.p.green@northumbria.ac.uk, callum.nash@northumbria.ac.uk,
jo.briggs@northumbria.ac.uk

Xiaoming Dong
Independent

xiaomingdong.joy@gmail.com

ABSTRACT
We propose the term procedural cultural sign systems generation to help define the
emergent practice of procedurally generating games that seek to mimic or in some
way signify fictitious culture. We borrow from cybernetics to understand procedural
cultural sign systems generation and exemplify this with our VMachine algorithm.
We argue the need for procedural content generation algorithms that are readily
implementable, and generalizable for multiple use cases. In this paper, we discuss
cybernetics in the context of procedural content generation followed by an overview
of recent games that generate elements of culture as part of gameplay. We then
outline our VMachine Algorithm and our method, before demonstrating practical
applications in two short case studies based on games we are currently developing.

Keywords
Procedural cultural sign systems generation, cybernetics, VMachine Algorithm,
procedural culture, generating culture.

INTRODUCTION
The conference reviewers aptly pointed out that this paper could have been split into
three; one presenting case studies of what we call Procedural Cultural Sign System
Generation or procedural culture for short, another applying cybernetic principles to
explain this practice, and a third detailing a working example of an algorithm that
attempts to demonstrate these principles. In presenting these in a single paper, our aim
is to encourage thinking about how the case studies interrelate and encourage critical
discussion towards sketching out a theoretical framework by ‘providing a context in
which to think’.

In the popular television series Star Trek, the holodeck can generate vast
environments and narratives from the utterance of a few words. Projecting the
audience to the year 2376 (though filmed in 2000), the crew of USS Voyager, for
respite, created ‘Fair Haven’, an interactive 19th century Irish village populated by

 -- 2 --

hundreds of characters going about their everyday routines and activities, interacting
with each other and with Voyager’s crew members. We reference this village in our
title because it represents an emergent culture and associated mythology, yet one that
is a stereotypical toffee tin picture of Irish society in the 19th century. This illustrates a
key limitation when attempting to procedurally generate culture. No matter how
sophisticated or how much variety is produced for these cultures, what is produced
will carry the inherent biases and ideology of the designer-developers. Perhaps, Fair
Haven exemplifies what to avoid when procedurally generating culture.

The holodeck’s advanced level of immersive, narrative driven cultural sign generation
and representation as envisioned in Star Trek, is of course still not possible today.
However, the generation of causally related assets, using Procedural Content
Generation (PCG), particularly in AAA open-world, massive multiplayer online
games, is slowly becoming normalised as the technology becomes more reliable.
These causally generated assets promise players exploration of vast living
environments. They in part respond to calls from gamer and developer communities
for multi-level multi-content PCG (Togelius et al. 2013) or perpetual uniqueness
(Short and Adams 2019, 15), where wildly different game worlds with all the
associated content are generated at the click of a button, with memorable characters
guaranteed to appear on demand. There is also community appetite for general
content generators (Cook et al. 2019; Togelius et al. 2013), which can be used in
multiple contexts, and are easily deployable for a wide range of projects. These help
to proliferate PCG techniques and systems to different groups of designer-developer
users, both in industry and academia. One of the motivations of this paper, then, is to
advocate for these principles while contributing a practical solution.

We begin the paper by discussing our motivation, before introducing cybernetics as a
way of explaining how PCG systems handle complexity. We then give an overview
of well received contemporary games that generate elements of culture as part of
gameplay, which we refer to as cultural sign systems informed by Roland Barthes
(1977). We go on to outline our algorithm, which uses cybernetics to inform the
handling of complexity—in cybernetics’ terms ‘variety’—to contribute an approach
to the proliferation of large amounts of variety in procedural culture and beyond. The
algorithm provides a low-barrier-to-entry technique and can be used in multiple
contexts.

By ‘algorithm’ we refer to a finite sequence of well-defined, computer-implementable
instructions that typically solve a class of specific problems, or that can perform a
computation (Math Vault n.d.; Merriam Webster Dictionary n.d.). While loosely
synonymous with complexity, we use variety in reference to Ashby’s (1956),
mathematical description of the total number of possible states within a system (e.g.,
a flipped coin has a variety of two, a dice a variety of six).

 -- 3 --

BACKGROUND AND MOTIVATION
PCG systems for video games take an amount of input variety and through an
algorithmic process create a variety of output content that the player interacts with
through gameplay. The central problem we explore in this paper is this: too little
variety limits the experience of novelty and too much produces incoherent, unusable
output (Short and Adams 2019). Using limited or excessive variety for PCG systems
is especially noticeable in AAA, open-world massively multiplayer online games
where thousands of players are exploring one game environment together. As the
scale of game environments has increased to accommodate ever-larger player
communities, the challenges for procedural generation have similarly multiplied, and
will continue to do so potentially exponentially. For example, Elite Dangerous (2014)
claims to have a 1:1 scale Milky Way Galaxy replete with 400 billion explorable
systems. If only 0.1% of these contained unique civilisations, the games designer-
developers would need to create 400,000,000 separate civilisations. The scale of this
problem rapidly increases if these individual civilisations are designed to emulate
elements of culture in such a way that is meaningful to players, to have unique
varieties of cultural signs that are interactive, that develop over time and interrelate.

We were motivated to appropriate cybernetics, specifically Ashby’s Principle of
Requisite Variety (1956) and Stafford Beer’s Viable System Model (1984), as a
means of balancing novelty and coherency in output variety, using alien civilisations
and their cultural sign systems for demonstration. Furthermore, designing PCG
algorithms with limited variety means that they are often not reusable outside of their
original purpose (Togelius et al. 2013). We were motivated to investigate to what
extent cybernetics could help us design more generalisable, easy to use PCG.

Culture in Video Games
Our proposed heuristic model alludes to cultural signs comprising physical
manifestations that signify the values and behaviours of a society (Barthes 1977;
Danesi 2013). While exactly what constitutes culture within a game environment is a
topic for rich discussion beyond the scope of this paper, we advocate for establishing
better-informed debate on how narrative-driven games inherently express and
reinforce values and ideologies (Ash and Gallacher 2011; Longan 2008).

Drawing on Cybernetics: Ashby’s Law of Requisite Variety
A universal principle in cybernetics is that for a system to be viable and function as
expected it must be able to handle a variety of states (parameters) and operate within
a defined set of states. If a state is exceeded, such as the external temperature being
too low for an organism to maintain homeostasis, the system must adapt to remain
viable. It does this by amplifying (adding to) its variety of states. For example, human
beings could be said to amplify variety to deal with cold weather by putting on a
jacket. Variety-handling on the part of the system can also attenuate—or reduce—its
number of states to remain viable. Take for example the Earth’s atmosphere, where
human production creates carbon that cannot be effectively absorbed by nature.
People must both attenuate the production of atmospheric carbon whilst also
amplifying carbon storage to ensure the viability of natural systems upon which
humankind depends.

This way of understanding the viability of both simple and complex systems is
described in Ashby’s principle of requisite variety: every system must contain the
requisite variety of states to match those of its environment. This can be achieved
through attenuating and/or amplifying the systems number of states. Ashby therefore
states that “Variety can destroy variety” (1956, 207), using the example of two

 -- 4 --

players in a game. For one to win, they must create a variety of states that their player
opponent cannot handle by luck, knowledge, or some external means. On the other
hand, if the opponent finds a way to increase or attenuate their variety to handle these
states they remain in the game. The end of the game is reached when one player’s
variety has absorbed that of the other player with gameplay essentially a dialectic
opposition of two sets of variety. If Ashby's principle has universal application, then
the question we examine is how this principle applies to PCG systems. PCG systems
can produce a variety of states, but it is the players who must ultimately handle this
variety in both narrative and gameplay.

Too much variety can lead to output that is incoherent and not fit for the designer’s
intended purpose e.g., "One would not want airplanes to change in one step into
wheelbarrows" (Togelius et al. 2013, 66). Using a cybernetics lens, the player can be
understood as a system containing a certain amount of variety. Some players will be
able to narratively contextualise the appearance of the wheelbarrow—in what, Jason
Grinblat, the designer of the emergent narrative game Caves of Qud (2015) refers to
as Apophenia, the tendency for people to perceive meaningful connections between
unrelated things (GDC 2019; Grinblat and Bucklew 2017). Other players will reject it
outright. This might be considered a simple content design problem; why would the
designer provide an airplane with the possibility of turning into a wheelbarrow?
Limiting the variety works to ensure coherency of output. However, in our case of
procedural culture for alien civilisations, it is much harder for the designer to
manually restrict, in design time, the huge variety of outputs required if each new
alien civilisation is to be considered novel by players.

Consider for example the children’s television program Transformers (1984) in which
it is perfectly plausible that an airplane should suddenly ‘transform’ into a
wheelbarrow. However, this action is contextualised and made acceptable by the
narrative, provided that the audience have suspended their disbelief (Coleridge 1817).
If initial design input is limited, the opportunity to create unique civilizations and
construct compelling narratives around them is limited. Counter to this PCG variety
problem is Kate Compton’s oatmeal problem (Short and Adams 2019, 15). Here,
procedural generation produces highly varied parameters for a predictable outcome.
In this case, the players easily absorb the variety generated by the PCG system but do
not experience novelty. Therefore, from the perspective of Ashby’s principle,
procedural generation can only be perceived as novel (instead of random) if the
variety of PCG in the narrative and the player’s capacity to make sense of that PCG
within the narrative remain in step.

 -- 5 --

VARIETY AND VIABILITY – THE VIABLE SYSTEM MODEL
According to Ashby’s principle, when two systems can absorb each other’s variety,
they are viable. So, when we talk about the variety produced by a system and variety
that could be absorbed by the player as remaining in step, we can understand this in
terms of Ashby’s statement that ‘variety destroys variety’. Stafford Beer’s Viable
System Model (1984) operationalises this principle in a generalisable system model
for any viable system, from the autonomous nervous system to entire economies.

Figure 1: Diagram of Stafford Beer’s Viable System Model.

We take from Beer the notion that we can design PCG systems to better handle
variety, and that any complex PCG system (such as the holodeck from which we draw
inspiration) must contain ‘variety handling apparatus’ to realise the full potential of
PCG systems as being able to provide ongoing novelty to players in gameplay and
audiences in narratives. The Vmachine we shall go onto present operationalises a
small part of this model in recursively attenuating variety, and we present the Viable
System Model here to illustrate our design inspiration and encourage further
discussion on the application of this and other cybernetic lens.

 -- 6 --

PROCEDURAL CONTENT GENERATION METHODS
PCG in video games is a well-established practice with a long history stretching back
to the early years of computing. There are many approaches, each with respective
advantages and limitations (Azad and Martens 2019; Bontchev 2016; Harrell 2005;
Hartsook et al. 2011; Karth 2019; Kreminski and Wardrip-Fruin 2018; Balali
Moghadam and Kuchaki Rafsanjani 2017; Salminen et al. 2017; Togelius et al. 2011;
Togelius, Justinussen, and Hartzen 2012). Current approaches tend to focus on
generating content that designer-developers can guarantee will produce outputs
relevant to the generation context, achieved by limiting the design input. Because of
this, systems produced are rarely multiple or general-purpose. Similar to our approach
(Togelius et al. 2011) established the idea of fitness functions in search-based
procedural generation enabling the algorithm to attenuate selection of procedurally
generated content to that perceived as having meaningful connections. These
mechanisms include direct fitness functions whereby generated content is assigned a
fitness value. This is useful for content that has a specific function such as the number
of doors or exits in a dungeon. Simulation-based Fitness Functions that use artificial
agents to establish the viability of content are useful to determine if generated content
is usable. Meanwhile, Interactive Fitness Functions define the fitness of generated
content by monitoring how players interact with it during gameplay. There are also
examples of PCG systems that produce a wide range of encyclopaedic content (Ryan
2014) that could be useful for the generation of a large variety of different content
types. Generating content from large datasets such as Wikipedia is also a viable
approach (Barros et al., 2016)

To create an algorithm for the generation of procedural culture for fictional alien
civilisations, large databases that readily communicate with each other are useful for
diversifying output. This means that any selection process must recognise meaningful
connection possibilities for extremely large amounts of diverse content. In our
attempts to address limitations of database handling and to create a flexible, easy-to-
use, generalisable system we contribute the VMachine Algorithm (see later). This is a
probabilistic constraint solving algorithm (Short and Adams 2019, 9) that amplifies
and/or attenuates variety recursively, to provide a constraint solver that can utilise
extremely large databases, without the need for high levels of computation or
wo/manpower. The algorithm is heuristic and readily adaptable and aims to be
suitable for the generation of procedural culture and potentially other PCG tasks.

State of the Art Procedural Culture Generation in Video Games
First, in this section we summarise how procedural culture generation works in three
different games to demonstrate the problem space and application of our VMachine
Algorithm. Although the associated algorithms of these games are generally not
public knowledge, there are insights provided by the game’s developers, through
Youtube videos, academic papers, and lectures. We also examine their output through
gameplay, as we are examining PCG in these cases from the players’ perspective—
and direct experience of the variety produced—rather than solely examining the
underlying tools.

No Man’s Sky's (Hello Games 2016) worlds feature generated terrain, foliage,
creatures, weather conditions, mineral placement, sites of interest, etc. (GCD 2017).
The game also generates fragments of culture, in the form of ‘ancient’ ruins, which
afford players opportunities for interpretation from the perspective of exploration and
promotes the imagining of a universe full of sentient life capable of producing
advanced culture. This is constrained by the limited content available and relies
heavily on players wanting to explore. In their study of this feature Catherine Flick et
al. (2017) refer to players as archeologist gamers or ‘archaeogamers’ who explore,
catalogue, and analyze found objects as they are generated and discovered in the

 -- 7 --

game, and who then seek to set acode of conduct echoing those used in real-world
archaeological sites. There are also limited examples of pre-designed cultural sign
systems that are not the remnants of past civilisations, including the “five sentient
species that can be encountered throughout the universe, each with distinct languages,
lore, and technology” (‘No Man’s Sky Wiki’ n.d.).

Dwarf Fortress (Bay 12 Games 2002) uses algorithms that define the narrative space
in which generated worlds exist supported by societal histories. Day-to-day
interactions between characters are factored in, creating a rich emergent backstory.
This includes defining the potential of the character agents (Aylett 1999) to act, which
provides near-endless narrative content to explore, interpret, and perceive as
emerging from or cocreated by player input (Kreminski and Mateas 2021). However,
there are also constraints, most notably concerning the predefined character types:
dwarves, humans, elves, and goblins, etc., and their typical behaviour. This is a
simple way of establishing meaning for players but is limited by pre-design. This
approach would be inadequate if applied to procedurally generating novel alien
civilisations from beyond the common fantasy canon. The implication is that the
game’s generation process relies on typical character behaviors designed by the
developer rather than generated by algorithms. On the other hand, the game provides
a large variety of cultural signification, which draws players into an emergent
narrative as they are surprised by the seeming autonomy of the dwarves and the
complexity of their generated history. Dwarf Fortress provides unexpected variety,
creating the feeling of emergence (Walsh 2011) as players must both interpret and
contextualise the evolving cultural space.

Blaseball (The Game Band 2020) is a relatively new online game that simulates a
fantasy baseball league. Players interact by picking a favourite team and selecting a
fictional player from this team to idolize. These team players have combinations of
obscure metrics such as number of fingers, their ‘shakespearianism’ and
‘unthwackability’ (People Make Games 2020) which provides data for comparison of
fictional team player abilities and their effectiveness against other teams. Blaseball’s
concept design is rooted in surrealism, providing interesting characterisation and
situations, which are used by game players to inform and develop their own stories
and culture. This approach goes beyond the core gameplay loop, enabling game
players to make sense of the game’s surrealist content while interacting with and
contributing to it, driving its emergent collective fanfiction created by player
communities. This promotes ongoing dialogue between the fans of the game and the
game’s developers, mediated by the game’s unique abstract setting, logic, and game
mechanics. In comparison to the other games discussed, Blaseball gives little variety,
comprising mostly of the procedural generation of statistics, though the game’s
community of players amplifies this variety and through collective fiction have
established a different social form of procedural culture.

 -- 8 --

 No Man’s Sky Dwarf Fortress Blaseball

Procedural
Culture

Fragments
scattered around
generated terrain
at specific sites of
interest

Created as a part
of game world
generation

Created by player
communities, based
on in-game content,
from which designers
then add new
parameters

How the player
engages with
the procedural
culture

Exploration and
gameplay

Core gameplay
and exploration of
information about
the generated
world

Players form
communities to
engage with and
develop procedural
culture

Required level
of player
interpretation
of procedural
culture

Medium Low High

Table 1: Summary of procedural culture in the three games discussed.

THE VMACHINE ALGORITHM
The VMachine Algorithm is a stochastic variety handling algorithm utilising a
Bayesian network (Ben-Gal 2008) that determines whether node states are likely to
exist in relation to other node states. States are specific content, and nodes are state
containers and state selectors. The algorithm is designed to foster meaningful
connections between individual nodes. When the algorithm runs, nodes can use any
other nodes that have a selected state to attenuate their own state selection. Once this
process is complete, and all nodes have selected their states the resulting content is
consolidated and used for the intended purpose. This could involve producing content
that is then used for the creation of graphical content or defining alien behaviours (see
later). Each node has a scale (between 1 and a user-defined integer) that all possible
states must reference to provide a set reference points for attenuation between nodes
(see Figure 2).

Figure 2: Selection, attenuation, and amplification between nodes i.e. state containers
and state selectors.

 -- 9 --

The Mathematical Method
In this Section we present the mathematics required to build the algorithm, this is for
designer-developers who are interested in building and using the algorithm for their
own projects/research. To set up the algorithm, a designer-developer must create a set
of nodes and associated potential states. Each state is assigned an appropriate state
scale integer. Designer-developers select which nodes attenuate which other nodes.
When the algorithm runs, nodes pass their state selection along a chain, which is then
processed by receiving nodes. Each receiving node randomly selects from its own list
of states, takes this state’s scale number, and deducts it from the received state’s scale
number. In the following example A represents the state scale number received by the
node, B represents the state scale number selected by the node, and X represents the
difference between A and B, with X taking the absolute value of A minus B.

In our example the sample space is thus: A {1,2,3,4,5}, B {1,2,3,4,5}, X {0,1,2,3,4}.
X is a discrete variable over a particular range of real values from 0 to 4. The
probability distribution of X is shown below.

X X1 = 0 X2 =1 X3 = 2 X4 = 3 X5 = 4

P P(X=x1) = P(X=x2) = P(X=x3) = P(X=x4) = P(X=x5) =

Table 2: Possible X values and their associated probabilities.

P(R) is the probability of reselecting the node’s state, P(N) is the probability of not
reselecting the node’s state, P(X|R) is the conditional probability of reselecting when
X happens, e.g., P(x=0|R) represents the probability of reselecting when X = 0, hence
P (x= 0|R) = . Individual nodes can be attenuated by groups of nodes. This is done
by querying each node in the group individually. So, if node A is attenuated by node
B and node C, A must produce positive results on both B and C’s content to finalise
its selection.

Figure 3: The probability tree diagram for the VMachine Algorithm output, P(X|R) is
the probability of a node reselecting its state, and P(X|N) is the probability of a node

not reselecting its state.

 -- 10 --

DEMONSTRATING THE VMACHINE ALGORITHM
We now outline two case studies that we have implemented and that are currently
testing the algorithm in games developed by the first two authors. The first concerns
the context of procedural culture and the second generates behaviours for a fictional
character. Both comprise unique instances of using the algorithm to demonstrate its
ease of use and generalizability in multiple contexts.

Procedurally Generating Cultural Content: Fictional Civilisations
This project has been developed to generate backend content, i.e., not seen by players
but useful in generating a wide variety of frontend content for player consumption.
For demonstration purposes, a piece of text generation software is available using
browsers compatible with WebGL, at www.AlienGenerator.com [accessed 12
October 2021]. Although we have attempted to make this text generator consistent
and easily readable, we stress that it is purely to demonstrate the algorithm’s varied
output and not intended as final player ready. To utilise the algorithm involved a few
key steps: first, a scale of ‘closeness to how humans experience the universe’ was
defined (1 being very close and 5 is far from it) to help us create potential node states
and associated scale number (e.g., the state ‘earth-like planet’ would use 1, as it is
very close to the human experience of the universe). Defining nodes was the next step
e.g., Planet of Origin has 5 possible states (though any number can be used), with an
allocated number: earth-like planet = 1, water planet = 2, rocky planet = 3, gas planet
= 4, and nebula = 5. In total, 15 nodes (see Figure 4) are used: planet of origin (1),
variety of biomes (2), ubiquitous materials (3), development of the means of
production (4), species physiology (5), primary sensory apparatus (6), larger or
smaller than the typical human (7), consumption method (8), number of senses (9),
social viability (10), if they wear clothing? (11), This acts as a variety amplifier
involving additional garments (12).

Figure 4: Variety proliferation throughout procedural culture, considering designer
input and player interpretation.

After this, the selection process moves onto homogeneity (13), recorded history age
in human years (14), and rate of change (15). The arrows indicate the occurrence of
variety handling apparatus that attenuate the scale choices. These nodes include a
very small amount of civilization variety to allow us to start defining higher-level
cultural nodes e.g., garments. By using Species Physiology, Planet of Origin, Rate of
Change, Homogeneity, and the Development of the means of production for
attenuation of this node a general description of garments worn by the fictitious
species is created (e.g., garment decoration, functionality, or necessary for survival).
With enough nodes, it will be possible to take this much further defining content such
as colour palettes, e.g., based on how the society creates dyes, and materials with the
most value e.g., for jewellery, etc.

 -- 11 --

Figure 5: Latest example output for the text generation program that is available
www.AlienGenerator.com (requires WebGL) [accessed 12 October 2021]. This is an
example project for generating procedural culture.

Reflection
The algorithm was easy to deploy for the text generator, (see Figure 5), and relatively
easy to design for, although we found that nodes attenuated by more than one other
node sometimes added more complexity depending on how much fine control over
output was required/wanted. Fine control here, means control over the most likely and
least likely/impossible outputs. For a high amount we needed to spend more time
understanding individual connections for each attenuating node to guide outputs to
what we considered to be intelligible/meaningful connections for player
interpretation. Of course, with a huge amount of variety this approach becomes less
feasible, and so, depending on requirements, and the amount of variety in any given
system, we recommend focusing more on a loose approach, such as the
contextualisation of the stochastic scale approach i.e., ‘closeness to how humans
experience the universe’.

We found that the stochastic scale approach was excellent for the designing process,
as it gave us a simple way to quickly determine each states associated scale number.
Yet, it also had certain limitations in that some states were difficult to measure using
this scale. We also found that higher numbers of potential states gave much better
results, while insufficient states crashed the system as the nodes sometimes struggled
to reach a positive result. Limiting the number of checks a node can make before
randomly picking any available state helped to address this issue whilst also
providing fewer desirable outputs. Ultimately, a mixture of fine control and likely fit

 -- 12 --

worked well for us in our specific project, but we feel that the likely fit would create
the most interesting results, even if they are not entirely believable/interpretable, this
is where research into how we might convert generated information into different
procedurally generated representational forms/narrativisation to help guide players in
the interpretation process, could provide an interesting future research direction.

Procedurally Generating Fictional Character Behaviours
For the second case study, we deployed the algorithm in a video game, working
title Void and currently under development. This is a single-player game whereby the
player must collect objects to appease a mysterious entity whilst also trying to
determine what type of entity it is. This entity can be one of several types selected at
random at the start of each game, for example, a hostile alien. The entity’s identity is
not revealed until the end of the game once the player has met the win or lose
conditions. The first step of implementation is determining what the entity wants for
each specific round by using the algorithm to attenuate selection. We first set the node
state (A) (see The Mathematical Method section), which represents the entity to 1 and
for each of the potential objects that the entity could want, we set a corresponding
number (B) which is based on the type of object of which there are 8 types. It is
simple to design how likely entity types are to ask for specific object types from the
player e.g., a hostile alien is more likely to want military-type objects determining
those objects are set to 2 for a hostile alien. Conversely, a hostile alien might not be
very interested in cultural object types determining that this is set to 5 for a hostile
alien and making it unlikely that cultural objects would be selected for that entity’s
requirements.

Figure 6: Void game screenshot showing (red) sphere entity representation.

In gameplay, the entity is represented as a moving and visually changing sphere (see
figure 6) that follows the players as they move around the map. Its type influences its
behaviours. A hostile alien has a higher probability of showing more aggression if the
player fails to collect the required items. These cues support the player in making
informed decisions and determining the type of selected entity. Behaviours are
signalled by changes in the sphere’s colour, sounds, movements, size, and texture. We

 -- 13 --

manage all these behaviours using our VMachine Algorithm, which uses metrics such
as entity type, the number of objects left to collect and how much time the player has
left to collect them, to determine the entity’s behaviours. Similar to the process for
selecting objects, the entity’s current state (A) is determined by these metrics and
checked against a list of all possible behaviours (B). The first behaviour in the list to
gain a positive result is then used as the entity’s next behaviour.

Reflection
This approach was useful, allowing for easy implementation within the game’s
already-established state machine architecture. It provided a way to create semi-
predictable behaviours for all entity types. This was ideal for our use case, as the
entity needed to remain mysterious yet predictable enough to allow players to make
informed decisions on its nature. By providing this entity with the possibility to act
outside of a strict set of parameters per type, the game became more challenging. This
is due to all available entity actions taken by any entity type being determined by
probabilities based on the current state of the game. There were limitations in that,
there was only a small variety of possible entity actions, and metrics on which
selections were made. This created a situation similar to the previous case study,
whereby, sometimes it would prove difficult for the algorithm to gain a positive
result.

DISCUSSION AND CONCLUSION
We chose to focus on creating cultural signs systems for science fiction precisely
because it demonstrates a variety problem: Thinking about extra-terrestrial life
amplifies this challenge taking us immediately into the unknown. Before design even
begins, possibilities for what can be generated for alien civilisations is limited by our
inability to envision and comprehend a full variety of outcomes for what is in essence
beyond our subjective experience as designers-developers. To be self-critical, this
problem of procedural culture being limited by the subjective cultural grounding of its
designers-developers warrants further consideration. Games are inherently ideological
(Ash and Gallacher 2011; Longan 2008); while they may not be motivated by the
explicit values, they are grounded in and reflect those of their designers-developers. If
we are to create procedural culture that is meaningful and novel to marginalized
people and reflects their values and experiences, having hegemonic normative initial
variety in procedural culture is immediately problematic. This is where the creation of
easily implementable and user-friendly, general content generators (Togelius et al.
2013) could be most valuable, allowing for a diverse set of designer-developers to
easily input into procedural culture systems, and without the need for and access to
advanced coding skills.

Ashby’s law (1956) provides a universally applicable analytical and evaluative lens
for the design of procedural culture, to promote understanding of the relationship
between algorithm, setting, and audience perception. Any system that attempts multi-
level multi-content PCG (Togelius et al. 2013) must navigate the tension produced by
the player's ability to absorb variety and the system’s ability to attenuate and amplify
it for narrative coherence (Karhulahti 2012) —and novelty. As discussed, the latter is
curtailed by the designer-developer’s biases and values. Handling variety here should
include understanding one’s views and biases; when taking a cybernetics view, the
system is only as good as our model for the system (Von Foerster 2003). As designer-
developers it is important to be reflective and self-critical and seek to design
procedural cultures which are inclusive of atypicality. For future work, exploration of
how the generated content could be used for the creation of game assets is an
important step. The exploration of how to enhance our ability to create meaningful
connections for players is also very important, this might involve narrative
generation, and understanding how assets are presented to the audience. Finally,

 -- 14 --

exploration of creating open source, open access, simple to use procedural generation
systems that utilise the VMachine Algorithm as a way of democratising and
diversifying their inputs and outputs could yield interesting research, resulting in a
more inclusive approach to procedural generation in mainstream games and beyond.

REFERENCES
Adams, Zach, and Tarn Adams. 2002. Dwarf Fortress. Mircosoft Windows. Bay 12

Games. http://www.bay12games.com/dwarves/.
Ash, James, and Lesley Anne Gallacher. 2011. ‘Cultural Geography and

Videogames’. Geography Compass 5 (6): 351–68.
Ashby, W. Ross. 1956. An Introduction to Cybernetics. New York: J. Wiley.
Aylett, Ruth. 1999. ‘Narrative in Virtual Environments -Towards Emergent

Narrative’.
Azad, Sasha, and Chris Martens. 2019. ‘Lyra: Simulating Believable Opinionated

Virtual Characters’. Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment 15 (1): 108–15.

Balali Moghadam, Arman, and Marjan Kuchaki Rafsanjani. 2017. ‘A Genetic
Approach in Procedural Content Generation for Platformer Games Level
Creation’. In . Iran, Kerman. https://doi.org/10.1109/CSIEC.2017.7940160.

Barros, Gabriella A B, Antonios Liapis, and Julian Togelius. 2016. ‘Playing with
Data: Procedural Generation of Adventures from Open Data’. Proceedings of
1st International Joint Conference of DiGRA and FDG, 16.

Barthes, Roland. 1977. Elements of Semiology. Farrar, Straus and Giroux.
Beer, Stafford. 1984. ‘The Viable System Model: Its Provenance, Development,

Methodology and Pathology’. Journal of the Operational Research Society
35 (1): 7–25. https://doi.org/10.1057/jors.1984.2.

Ben-Gal, Irad. 2008. ‘Bayesian Networks’. In Encyclopedia of Statistics in Quality
and Reliability. American Cancer Society.
https://doi.org/10.1002/9780470061572.eqr089.

Bontchev, Boyan. 2016. ‘MODERN TRENDS IN THE AUTOMATIC
GENERATION OF CONTENT FOR VIDEO GAMES’. Serdica Journal of
Computing 2: 133–66.

Coleridge, Samuel. 1817. ‘From Biographia Literaria, Chapter XIV’.
Cook, Michael, Simon Colton, Jeremy Gow, and Gillian Smith. 2019. ‘General

Analytical Techniques For Parameter-Based Procedural Content Generators’.
In 2019 IEEE Conference on Games (CoG), 1–8. London, United Kingdom:
IEEE. https://doi.org/10.1109/CIG.2019.8848024.

Danesi, Marcel. 2013. ‘On the Metaphorical Connectivity of Cultural Sign Systems’.
Signs and Society 1 (1): 33–49.

Flick, Catherine, Andrew D. Reinhard, and L. Megan Denis. 2017. ‘Exploring
Simulated Game Worlds: Ethics in the No Man’s Sky Archaeological
Survey’. The Orbit Journal no. 2: 1–13.

Foerster, Heinz von. 2003. ‘Cybernetics of Cybernetics’. In Understanding
Understanding: Essays on Cybernetics and Cognition, edited by Heinz von
Foerster, 283–86. New York, NY: Springer. https://doi.org/10.1007/0-387-
21722-3_13.

Frontier Developments plc. 2014. ‘Elite Dangerous’. 2014.
https://www.elitedangerous.com/.

GCD. 2017. Building Worlds in No Man’s Sky Using Math(s). YouTube Video.
https://www.youtube.com/watch?v=C9RyEiEzMiU.

GDC. 2019. Math for Game Developers: End-to-End Procedural Generation in
Caves of Qud. YouTube Video. https://www.youtube.com/watch?v=jV-
DZqdKlnE&t=422s.

Grinblat, Jason. 2015. Caves of Qud. PC. Freehold Game LLC.
https://www.cavesofqud.com/.

 -- 15 --

Grinblat, Jason, and C. Brian Bucklew. 2017. ‘Subverting Historical Cause & Effect:
Generation of Mythic Biographies in Caves of Qud’. In Proceedings of the
12th International Conference on the Foundations of Digital Games, 1–7.
Hyannis Massachusetts: ACM. https://doi.org/10.1145/3102071.3110574.

Harrell, D. Fox. 2005. ‘Shades of Computational Evocation and Meaning: The
GRIOT System and Improvisational Poetry Generation’. In In Proceedings,
Sixth Digital Arts and Culture Conference, 133–43.

Hartsook, Ken, Alexander Zook, Sauvik Das, and Mark O. Riedl. 2011. ‘Toward
Supporting Stories with Procedurally Generated Game Worlds’. In 2011
IEEE Conference on Computational Intelligence and Games (CIG’11), 297–
304. Seoul, Korea (South): IEEE. https://doi.org/10.1109/CIG.2011.6032020.

Hello Games. 2016. ‘No Man’s Sky’. 2016. https://www.nomanssky.com/.
Karhulahti, Veli-Matti. 2012. ‘Suspending Virtual Disbelief: A Perspective on

Narrative Coherence’. In Interactive Storytelling, edited by David Oyarzun,
Federico Peinado, R. Michael Young, Ane Elizalde, and Gonzalo Méndez, 1–
17. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer.

Karth, Isaac. 2019. ‘Preliminary Poetics of Procedural Generation in Games’.
Transactions of the Digital Games Research Association 4 (3).
https://doi.org/10.26503/todigra.v4i3.106.

Kreminski, Max, and Michael Mateas. 2021. ‘A Coauthorship-Centric History of
Interactive Emergent Narrative’. In Interactive Storytelling, edited by Alex
Mitchell and Mirjam Vosmeer, 13138:222–35. Lecture Notes in Computer
Science. Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-030-92300-6_21.

Kreminski, Max, and Noah Wardrip-Fruin. 2018. ‘Sketching a Map of the Storylets
Design Space’. In Interactive Storytelling, edited by Rebecca Rouse, Hartmut
Koenitz, and Mads Haahr, 160–64. Lecture Notes in Computer Science.
Cham: Springer International Publishing.

Longan, Michael W. 2008. ‘Playing With Landscape’. Aether: The Journal of Media
Geograohy, 18.

‘Merriam Webster Dictionary’. n.d. Definition of ALGORITHM. Accessed 13
October 2021. https://www.merriam-webster.com/dictionary/algorithm.

‘No Man’s Sky Wiki’. n.d. No Man’s Sky Wiki. Accessed 12 October 2021.
https://nomanssky.fandom.com/wiki/Species.

People Make Games. 2020. What Is ‘Blaseball’ and Why Is It Taking over the
Internet? https://www.youtube.com/watch?v=Y5t8DwnDE1k.

Ryan, James. 2014. ‘DIOL / DIEL / DIAL’. Jamesryan.World. 2015 2014.
https://www.jamesryan.world/projects#/diol/.

Salminen, Joni, Sercan Sengün, Haewoon Kwak, Bernard Jansen, Jisun An, Soon-
Gyo Jung, Sarah Vieweg, and D. Fox Harrell. 2017. ‘Generating Cultural
Personas from Social Data: A Perspective of Middle Eastern Users’. In 2017
5th International Conference on Future Internet of Things and Cloud
Workshops (FiCloudW), 120–25.

Short, Tanya X., and Tarn Adams. 2019. ‘Procedural Generation in Game Design’.
Routledge & CRC Press. 2019. https://www.routledge.com/Procedural-
Generation-in-Game-Design/Short-Adams/p/book/9781498799195.

‘The Definitive Glossary of Higher Math Jargon | Math Vault’. n.d. Accessed 13
October 2021. https://mathvault.ca/math-glossary/.

The Game Band. 2020. ‘BLASEBALL’. 2020. https://www.blaseball.com/.
Togelius, Julian, Alex J. Champandard, Pier Luca Lanzi, Michael Mateas, Ana Paiva,

Mike Preuss, and Kenneth O. Stanley. 2013. ‘Procedural Content Generation:
Goals, Challenges and Actionable Steps’. Application/pdf, 15 pages.

Togelius, Julian, Tróndur Justinussen, and Anders Hartzen. 2012. ‘Compositional
Procedural Content Generation’. In Proceedings of the The Third Workshop

 -- 16 --

on Procedural Content Generation in Games - PCG’12, 1–4. Raleigh, NC,
USA: ACM Press.

Togelius, Julian, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. 2011. ‘Search-Based Procedural Content Generation: A Taxonomy
and Survey’. IEEE Transactions on Computational Intelligence and AI in
Games 3 (3): 172–86.

Walsh, Richard. 2011. ‘Emergent Narrative in Interactive Media’. Narrative 19 (1):
72–85.

Welker, Frank, Peter Cullen, and Corey Burton. 1984. Transformers. Animation,
Action, Adventure. Sunbow Productions, Marvel Productions, Hasbro.

