
Proceedings of DiGRA 2019

© 2019 Authors & Digital Games Research Association DiGRA. Personal and educational classroom

use of this paper is allowed, commercial use requires specific permission from the author.

A Taxonomy of Game Engines and
the Tools that Drive the Industry

Marcus Toftedahl, Henrik Engström
Division of Game Development

University of Skövde

Skövde, Sweden

marcus.toftedahl@his.se, henrik.engstrom@his.se

ABSTRACT
Game engines are a vital part of a game production pipeline, but there is a vagueness

of definitions regarding the boundaries of components in a game engine and the rest of

the production tools used in a game development pipeline. The aim of this paper is to

nuance the use of the term game engine and to put it into the context of a game

development pipeline. Based on data from the current state of game production, a

proposed taxonomy for tools in game development is presented. A distinction is made

between user facing tools and product facing tools. A defining characteristic of the

production pipeline and game engines is their plasticity. One of the conclusions is that

a “game engine” as a single entity containing the whole game production pipeline is

not desirable due to the large number of competences and needs involved in a game

development project.

Keywords
Game development, production pipeline, game engine, development tools, taxonomy,

production studies

INTRODUCTION
The origin of this study was an attempt to survey what kind of technical localization

support there is in commonly used game engines. This idea was based on our previous

research, where it was identified that indie developers tend to realize that localization

is necessary rather late in the development process (Toftedahl, Backlund, & Engström,

2018). Our initial hypothesis for this paper was that developers with limited experience

of releasing games on a global market were not exposed to localization tools through a

game engine in the same way as other parts of game productions. Many of the popular

game engines have built-in tools for graphics, animation, networked play, AI etc., and

our initial approach was to scrutinize which game engines have built-in tools for

localization. During that process, it was soon evident that this initial approach was not

particularly interesting to investigate mainly due to the complex area of game

production and its related tools. The complexity regarding definitions and

interconnections of game engines and development tools made research on a specific

function within a game engine difficult. Instead, we chose to alter the focus of this

study and propose a taxonomy of game engines and the tools that drives game

production.

Game engines are software required for the development of modern games (Anderson,

Engel, Comninos, & McLoughlin, 2008). But what is a game engine, who use them –

and is it even possible to talk about a “game engine” as a single coherent entity? This

paper aims to investigate the current state of the game engine concept in relation to

game development and production; who in a game development project is likely to use

a game engine, which game engines are common in the game industry of today (i.e.

 -- 2 --

2019) and what features and functions does a game engine have? The intention with

this research is to deepen the understanding of the complexities of game development

and its production pipeline from the perspective of the diverse set of competences

involved in a game production.

Producing a game includes a multitude of competences. Programmers, graphic artists,

sound designers, narrative designers and game designers are all competences with

various production based needs and work related tasks in a game development setting

(Hagen, 2009). Since games are not only an entertainment product but also a complex

technical system with the aim to give the end user a satisfactory, often entertaining,

experience, game development is a complex task where system engineering and

creative competences in art and design must be handled in the same project

infrastructure.

The work processes in game development projects have often been studied from a

software engineering perspective, approaching games as a different type of software

product; Wang and Nordmark (2015) have through a survey, with game developers as

respondents, researched software architecture and creative processes in game

development focusing on the software architecture used in a game development project.

Their results indicate that the software architecture is important and has impact on the

manageability of the complex development situation, where many competences are

involved. Further, the findings from this study indicate that the game concept has an

impact on the software architecture and subsequently the choice of game engine. A

frequent use of “middleware” and other external third-party components was also

reported. They state that the technical aspects of game production have become easier

during the last 5 years (the study was conducted in 2012) but due to player demands

“…game development itself has not been become easier due to higher player

expectations and higher game complexity” (Wang & Nordmark, 2015, p. 283).

Murphy-Hill, Zimmermann, and Nagappan (2014) present a study focusing on the

differences between game development and software development, using surveys and

interviews with game developers from the triple-A industry (i.e. large projects with big

budgets). One of their findings is that game developers are reliant on in-house tools, an

area that is underrepresented in research. To systematically investigate these tool sets

is identified as an area of further research.

The goal of this paper is to highlight the role of a game engine in a game production

and the relation between a game engine and the other tools used in a game production

pipeline. To achieve this, a number of steps have been taken to better understand the

complex situations and connections found in game development projects. In

chronological order as presented in the paper, the steps are: (1) identifying the roles in

a game development project to get an understanding of who is likely to use a game

engine; (2) a study of which game engines are commonly used in the industry; and (3)

an overview of the definition(s) of game engines derived from previous research and

game industry sources. The analysis reveals that there is a great deal of misconceptions

regarding the tools used in game production and what role a game engine plays. We

address these misconceptions by proposing a taxonomy for tools used in game

production, including how game engines and other development tools are related to the

production pipeline. Our main message is that the most important entity is the

production pipeline and that this pipeline, as well as the game engine it contains, is

characterized by a very high degree of plasticity.

 -- 3 --

ROLES IN A GAME DEVELOPMENT PROJECT
As previous research have stated (Hagen, 2009; O'Donnell, 2009; Tschang &

Szczypula, 2006; Zackariasson, Styhre, & Wilson, 2006) there is a multitude of

competences and roles involved in producing a game. Many of them are involved

directly in the production, thus using, or having to relate to the use of, a game engine

to make the game. Since the advent of digital distribution, even small scale productions

have the possibility to enter the market and reach large groups of consumers. The

traditional value chain of the game industry; including developers, publishers,

distributors and retailers commonly used in the triple-A big budget industry (Egenfeldt-

Nielsen, Smith, & Tosca, 2016; O'Hagan & Mangiron, 2013) is today not the only way

of releasing a game. This has paved the way for the “indie” game sector, where smaller

teams with smaller budgets can survive (and in some cases thrive) by selling games

(Payne & Steirer, 2014; Pereira & Bernardes, 2018). The production scope of triple-A

and indie differs though. Regardless of size, both production settings use some kind of

game engine.

One often cited source of information regarding the complexities of game development

is Game Development: Harder than you think, written by Jonathan Blow in 2004. The

article focuses on the complexities regarding game development and how game

development projects gradually have gotten even more complex over time. As an

example, a 3D game circa 1996 contains only a few modules for the base functions

(sound, 3D rendering, collision detection etc.) with low level of interconnections, while

a 3D game in 2004 contains four times as many modules with interconnections difficult

to track (Blow, 2004). (Whitson, 2018) describes how different development tools are

used by different developer roles in a project. While the main purpose of such tools are

to produce content, the tools used also acts as boundary objects helping the

development team to communicate scope and create a common vision for the project.

As previously stated: game development is a complex project to undertake. To get an

understanding of the complexities we have chosen to use the credits lists from two

games with very different scope and from two traditions of game development: triple-

A and indie. The games chosen as representatives from each category are based on both

the production tradition, but also on top lists. The triple-A game Assassin’s Creed:

Odyssey (Ubisoft, 2018) is credited as one of the games in the top selling list of 20181.

The indie game chosen, Undertale (tobyfox, 2015) has a similar track record on the

charts, dubbed as an “indie sensation” and on the top selling lists of 20162. Comparing

the projects shows that the number of people involved in creating these products varies

massively; from several thousand people to approximately two (one main developer

with additional art support from one artist).

Roles in triple-A production
Using statistics from Assassin’s Creed: Odyssey, based on its credit sequence shows

the complex nature of triple-A game development in sheer numbers. The credit

sequence consists of rolling text and is approximately 30 minutes long from start to

finish. During that time period, 4388 persons have rolled by where 3355 are developers

in one of 692 development roles (Table 1). The development roles in the project are

divided on 29 different development studios all over the world.

 -- 4 --

Assassin's Creed: Odyssey development statistics

Studios Amount

Development studios 29

Administrative studios 26

Total studios 55

Teams Amount

Development teams 72

Administrative teams 125

Total teams 197

Roles Amount

Development roles 692

Administrative roles 385

Total roles 1077

Staff Amount

Developers 3355

Administrators 1033

Total staff 4388

Table 1: Statistics from the credit sequence of Assassin's Creed: Odyssey

The credit list is divided into the respective organizations involved, and we have

presented it as such. Studio is the over-arching entity (examples include Ubisoft

Québec, Ubisoft Chengdu etc.) which have a number of sub-entities, i.e. teams with

more specific roles within each studio (i.e. Development Team Ubisoft Québec:

Design, Development Team Ubisoft Chengdu: Narrative etc.). We have also chosen to

separate development from administration in the statistics since this is done to a large

extent in the credits sequence as well.

Of the 3355 developers credited we found 692 different roles within the development

teams. To get an overview of how the roles are weighted in relation to each other, i.e.

how many different programmers are there, we used MAXQDA to create a word cloud

of roles. We multiplied the occurrence of each role by the amount of people associated

with it (i.e. if 3 persons was credited as 3D Artist the data would look like 3D Artist,

3D Artist, 3D Artist) and created the word cloud (Figure 1).

Figure 1: Word cloud regarding the roles credited in Assassin's Creed:

Odyssey

 -- 5 --

Tester and programmer were the two largest groups from the data set. There were also

a large number of people involved in translation and localization. In Table 2, the 10

most frequent words from the role word cloud are presented.

Word Frequency %

tester 415 9.1

programmer 402 8.8

manager 208 4.6

designer 154 3.4

technical 127 2.8

artist 111 2.4

gameplay 106 2.3

level 96 2.1

localization 77 1.7

translation 69 1.5

Table 2: Word count from the Assassin's Creed: Odyssey credits data,

derived from the word cloud created in MAXQDA.

All words are related to roles in the development. While some seems out of place (i.e.

technical, level or gameplay) they have a relation to a specific role like technical

programmer, gameplay animator or level designer.

Roles in indie production
To make a similar overview of a popular small scale indie game is easier. While

Undertale could be seen as an “easy pick” and as an unfair comparison to Assassins

Creed, it is worth to reiterate that both are examples of top selling games available on

multiple platforms. The game Undertale is produced in GameMaker and has one

developer credited as main developer (“Undertale by: Toby Fox”) and another

developer for various tasks, such as cutscenes and logo design. It is interesting to note

that the community connection is very apparent in this indie production, with a long

list of “Special Thanks” containing 880 names. While the sheer scope and production

values vary greatly between Undertale and Assassin’s Creed: Odyssey, it is also a sign

of the range of production resources when producing a popular game.

COMMONLY USED GAME ENGINES – AN OVERVIEW FROM
ITCH.IO AND STEAM
To understand which game engines are used to produce and release games we have

taken an approach using freely accessible data from two digital game stores: Steam and

Itch.io. The choice of digital game stores was based on two main factors: (1) data from

the report “The State of the Industry” released in connection to Game Developers

Conference 2019 (UBM, 2018) stating that Steam (47%) and Itch.io (18%) are the two

most commonly used digital stores for games on PC, and subsequently (2) the

difference of content between the two stores. Steam represents a spectra consisting of

both big- and small scale production, whereas Itch.io mainly targets indie and hobbyist

developers with projects of smaller scope.

In the case of Itch.io, information regarding game engines used in the released games

is available on an official statistics page3. The data is self-reported by the developers

and therefore some games may lack this information and/or information can be faulty,

making the data somewhat unreliable.

Steam, the largest digital distribution channel for digital games on the PC platform

(UBM, 2018), does not provide information directly like Itch.io does. Regardless of the

 -- 6 --

lack of open data, Steam is still a widely used source of information to understand the

state of the game industry of today and several analyst firms and data aggregator sites

use available data (i.e. SteamDB4 and SteamSpy5) to give an overview of the current

situation. The statistics available are mostly related to the consumer and user side of

the store, with no or little information related to the development aspects.

By using the script Steam Engines developed by Github user limdingwen6 information

regarding the use of game engines used in games released on Steam has been compiled.

The finished list contains 49 281 game titles including expansions and downloadable

contents (DLCs). Approximately 15% of the gathered titles have information regarding

game engine.

 The process to identify engines was conducted according to the following steps:

 A list of the names of all products currently available on Steam is gathered in

a comma separated value (CSV) file from the Steam store.

 The script retrieves information about the products from Wikipedia:

o If there is a Wikipedia page, the script checks if there is information in

the “game engine” field on the page. If there is information regarding

game engine, this data is stored in the CSV-file in relation to the name

of the game.

o If no “game engine” field exists, the script tags the game with

“unknown” in the CSV-file. The same is done if no Wikipedia page

exists.

 After the compilation of data from Wikipedia, the CSV-file is manually

cleaned from all products not identified as games. Since Steam hosts

applications and video, and audio files as well, these are removed using a script

in Excel identifying and tagging them for removal. The tagged applications and

videos are then removed manually to minimize the risk of removing game

titles.

This approach might seem overly complicated related to the results it yields, but

reliable information regarding the use of game engines is difficult to get. There is a

presumably large margin of error in the data from Steam as the version of the script

used does not double check the information with other sources. Upon manually

inspecting the results, games with a large number of expansions or downloadable

contents can skew the results in favor to a specific engine. We have chosen not to try

to separate DLCs from the main games due to the large number of DLC packages.

Unity and Unreal have been in the spotlight in the development community and their

market penetration is large. The data derived from Itch.io (Table 3) regarding the most

used game engines on that specific game store does support this claim: Unity is the

engine used in approximately 47 % of the games published on Itch.io.

 -- 7 --

Game Engine Number of projects % of total games

Unity 24200 47.3 %

Construct 6275 12.3 %

GameMaker 5643 11.0 %

Twine 3184 6.2 %

RPG Maker 1982 3.9 %

Bitsy 1683 3.3 %

PICO-8 1479 2.9 %

Unreal 1458 2.8 %

Godot 1274 2.5 %

Ren'Py 1008 2.0 %

Games with other engines 2993 5.9 %

Total games 51179

Table 3: Game engines used in games released on Itch.io (data collected

2018-12-28)

Other notable game engines used on the Itch.io platform are Construct (12 %) (Scirra,

2018), GameMaker (11 %) (YoYo Games, 2018) and Twine (6 %) (Klimas, 2009) –

game engines that mostly are associated with hobbyist or “indie” production. Due to

the nature of the Itch.io service, where hobbyists and indie developers can release

games with relatively little effort, the indie focus is not surprising. It is interesting to

see that Unreal is only used in approximately 3 % of the published games on Itch.io.

This share is on par with niche game engines such as PICO-87 and RPG Maker8, game

engines that have a very specific target audience and use. PICO-8 is a game engine and

game production platform that is based on specifications of a “fantasy console” with

harsh limitations to its technical specifications, while RPG Maker is targeted do

produce 2D games within the RPG genre.

The statistics from the use of game engines on Steam is presented in Table 4. The

number of total identified games including DLC and expansions is consistent with

industry reports regarding the matter. In an article on the gaming site PC Gamer

(Bolding, 2019) it is described that Steam as of January 2019 have approximately.

30,000 games and 21,000 DLCs, meaning that the data set at least have the total number

of game titles fairly correct. Since only approximately 13 % of the games in total have

been identified and tagged with a game engine, there is a large margin of error in the

data. The number of DLCs related to some titles is also apparent with an

overrepresentation of some game engines known to be used only in specific games.

Anvil, for example, only used in Ubisoft games such as the Assassin’s Creed series,

have 166 entries in the data set. The high number of Anvil titles is due to the DLCs

related to these games.

 -- 8 --

Game Engine Number of projects
% of total games

identified

Unreal 1726 25.6 %

Unity 889 13.2 %

Source 270 4.0 %

Cryengine 238 3.5 %

Gamebryo 215 3.2 %

IW 192 2.9 %

Anvil 166 2.5 %

id Tech 113 1.7 %

Essence 73 1.1 %

Clausewitz 68 1.0 %

Identified games with other engines 3266 48.4 %

Total games identified 6743

Unknown/unidentified games 42538

Total games in Steam database

(including DLC/expansions)
49281

Table 4: Game engines used in games released on Steam (data from 2018-

12-20).

The overlap between the top 10 game engines on Itch.io and the Steam game engine

list is small; only Unity and Unreal are present in both lists. None of the other engines

from the Steam data set is present in the Itch.io data at all.

GAME ENGINES AND PRODUCTION TOOLS
Previous research on game engines includes perspectives from software engineering

and software architecture; Messaoudi, Simon, and Ksentini (2015) investigate the game

engine Unity and from a technical standpoint measure its performance using a number

of tests straining the CPU and GPU. The authors also discuss a difference between a

game engine as a production tool and a game engine as the run-time executable that

“drives” the game. They propose to use the term game engine to describe the

executable, and the toolset that is used to build the games should be referred to as the

“framework” (Messaoudi et al., 2015). Anderson et al. (2008) are also mentioning the

misunderstanding in terminology and points to the fact that there is a lack of a “game

development language”. One of the examples regarding terminology is the “game

engine” term. Anderson et al. (2008) reflect on the boundaries of a game engine: (1)

the game itself is confused with the game engine and (2) if the toolset is a part of the

game engine. Other questions raised includes if it is “…possible to define a game

engine independently of genre”, i.e. having a game engine that can be so flexible to

accommodate for games in all genres – an “überengine” (Anderson et al., 2008, p. 229).

O'Donnell (2014) also reflects upon the boundaries between games and engine, with a

description of a game engine as “[t]he underlying software of the game. The engine is

not a game; it is more basic than that. It provides a platform, to which more code, data

and art assets are produced to make a game”.

From a software architecture perspective, a game engine is a complex system of

intertwined layers relating to hardware and other software. This complexity is also

reflected in the production process, as identified by Gregory (2014) who identifies a

large number of components integral to a game, handled by a game engine during

development. Components include input devices, graphics rendering functions,

collision detection systems, physics simulations and animation systems – to name a

few. To list all components in a game engine would be a daunting task, and attempts

have been made to understand the technicalities and components related to game

 -- 9 --

engines in a more general way. Anderson (2011) presents a conceptual model of a

typical game engine (Figure 2) consisting of an Engine Core interfacing with; (1)

Application specific code, (2) Engine Modules (input, rendering functions etc.), (3) a

Resource Manager which in turn handles (4) external Game Assets.

Figure 2: A conceptual model of a game engine (Anderson, 2011, p. 47)

As previously mentioned the term “game engine” has been identified as ambiguous

from a research perspective (Anderson, 2011; Messaoudi et al., 2015). To understand

the situation deeper, we have made an approach to capture the industry side of the term

as well. This approach has also been taken by O'Donnell (2014) who dubs the game

production pipeline as one of the most important parts of the game production process.

The production pipeline is described by O'Donnell (2014, p. 72) as the “…set of

technologies, standards, and practices through which art assets and design data flow

into the underlying game code”.

For this research, we have chosen to investigate how common current game engines

are described and marketed. Focusing on the engines from our game examples

(Assassin’s Creed: Odyssey and Undertale), as well as Unity and Unreal (the top results

from the market research) we cover a wide range of usage cases and game engine

categories.

On Unity’s website, a general description of a game engine is provided:

 A game engine is the software that provides game creators with

the necessary set of features to build games quickly and

efficiently. A game engine is a framework for game development

that supports and brings together several core areas. You can

import art and assets, 2D and 3D, from other software, such as

Maya or 3s Max or Photoshop; assemble those assets into scenes

and environments; add lighting, audio, special effects, physics

and animation, interactivity, and gameplay logic; and edit, debug

and optimize the content for your target platforms.9 (Unity

Technologies, 2018).

This general definition of a game engine is consistent with what game engine

definitions from the research have shown: a framework for game development where

a plethora of functions to support game development is gathered. While this example

 -- 10 --

is describing game engines in general, there is also a description of the Unity game

engine itself:

The world’s leading real-time creation platform. Unity is used to

create half of the world’s games. Our real time platform, powered

by tools and services, offer incredible possibilities for game

developers, and creators across industries and applications

(Unity Technologies, 2018).

Unreal Engine, the top result from the Steam data, is described as:

Unreal Engine is a complete suite of creation tools designed to

meet ambitious artistic visions while being flexible enough to

ensure success for teams of all sizes. As an established, industry-

leading engine, Unreal delivers powerful, proven performance

that you can trust (Epic Games, 2018).

In the case of Assassin’s Creed: Odyssey, where an in-house game engine has been

used, it is more difficult to get information. The game engine for the Assassin’s Creed

series is called Anvil, and in its current iteration AnvilNext 2.0. Wikipedia has a page

with some information, describing its iterations from the initial version developed for

the first game Assassin’s Creed (the engine was then called Scimitar) to its current

state:

Claude Langlais, technical director of Ubisoft Montreal, says that

modeling is done in 3ds Max for environment and ZBrush for

characters. The engine uses Autodesk's HumanIK middleware to

correctly position the character's hands and feet in climbing and

pushing animations at run-time. […]In 2012 an updated version

was released called AnvilNext; which was developed for

Assassin's Creed III and beyond featuring a number of

enhancements. Firstly, AnvilNext adds support for a new weather

system, which allows for specific weather settings as well as an

automatically cycling mode as seen in Assassin's Creed IV.

Secondly, the renderer was rewritten for higher efficiency and

support for additional post-processing techniques, enabling up to

3,000 non-playable characters to be rendered in real time

(compared to the few 100s in the previous Anvil engine) […]

More importantly, AnvilNext starting with Assassin's Creed Unity

is capable of generating structures in a flexible and automatic

manner while following specific design rules and templates, which

reduces the amount of time and manual effort required for artists

and designers to create an intricate urban environment.

(Wikipedia, 2018)

GameMaker, the engine used in Undertale and in many indie productions (as seen in

the Itch.io data) is presented as:

 Using a single development workflow GameMaker Studio 2

allows you export your game directly to Windows desktop, Mac

OS X, Ubuntu, Android, iOS, fireTV, Android TV, Microsoft

UWP, HTML5, PlayStation 4, and Xbox One (YoYo Games,

2018).

 -- 11 --

The main difference in the GameMaker description lies in its focus on single

development workflow. Compared to both Unity and Anvil, GameMaker does not

include references to external tools, focusing more on the provided internal set of tools.

Tools, services, licensing models, reusability, modularity, performance/power and

quick iterations are examples of features that are in focus in the general descriptions of

the presented engines. Thus, based on these descriptions provided by game engine

creators, it seems there is no (or little) confusion whether game engines are a production

tool or a part of the game, as identified by Messaoudi et al. (2015).

MISUNDERSTANDINGS OF THE TERM GAME ENGINE
In this paper, we have presented an overview of roles in a game production, definitions

of game engines and a number of used game engines in the game industry today. From

this overview, we can see that:

 The scope of a game development project can vary dramatically (i.e. one man

indie projects versus large scale triple-A productions)

 There are a multitude of development tools used referred to as game engines

 There is no uniform definition of scope in relation to the term game engine in

a production pipeline

While this is problematic from a game production perspective, the communication

within a game development project would benefit from having uniform definitions but

it also seems that the loose use of the term game engine can be problematic from a

publicity perspective as well. In an article on the gaming site Kotaku (Schreier, 2018)

it is reported about the backlash from fans regarding the game Fallout ’76 from the

game company Bethesda. Upon release, the game was receiving negative feedback

from the player community regarding bugs and performance issues, and questions were

raised about the game engine used would not be on par with technology used in other

games released at the time. The article is describing how a spokesperson from Bethesda

stated that they are continuing to use their tools even in forthcoming games and they

are happy with their editor. The spokesperson means that their tools are allowing the

developers to create content quickly and that they have implemented a new renderer as

a part of the tool set used. The term game engine was not mentioned by the

spokesperson in the statement. Still, there was a community backlash stating that their

game engine was outdated, where Schreier (2018) points out that the critics did not

grasp the complexity of a game production with its multitude of tools and competences.

In the article, Schreier (2018) is arguing that “An engine isn’t a single program or piece

of technology—it’s a collection of software and tools that are changing constantly”.

This example adds to the need of a uniform “game language” as proposed by Anderson

et al. (2008), but in a much wider context – involving the community aspects of

communication as well.

In addition, a specific example of how the ambiguous use of the game engine term can

be impacting the production is described by gaming site Eurogamer (Yin-Poole, 2019).

Eurogamer reports about the problems that the game studio Starbreeze encountered

while developing the game Overkill’s The Walking Dead. The article states that the

management of Starbreeze focused a lot of resources to buy and further develop an in-

house engine, Valhalla, with the intention to use the Valhalla engine in all Starbreeze

games. Developers interviewed in the article state that the Valhalla game engine was

essentially only a graphics renderer, with no tools attached to it: “It was just not good.

Like most engines, it had good potential, but it wasn't in a good place for people to

properly develop a game. That was the problem. It was just way too far behind in the

pipeline” a developer stated (Yin-Poole, 2019). It was later decided that the Valhalla

 -- 12 --

engine should be replaced with Unreal, but the decision came late in the development

process and a lot of work had to be redone due to the switch of main production tools.

A PROPOSED TAXONOMY FOR TOOLS IN GAME PRODUCTION
The phrase game engine has been used for a very wide range of concepts related to

game development. It has been used to represents all tools used to produce games. It

has also been used to describe the core runtime of a compiled game. As discussed

above, misconception of the term has led to confusions among both developers and

players. To avoid this in the future, we propose a taxonomy for tools in game

production that focus on the characteristic functions of tools.

In our proposed taxonomy, the game production pipeline is the core production process

of a game where professionals from various disciplines create content that is assembled

and combined into a game that can be executed on a target platform. This idea is in line

with the findings presented by O'Donnell (2014). A game engine will be a part of this

pipeline, but as pointed out by O'Donnell (2009) there are many additional components

needed for an efficient game production. In the production pipeline, the connections

between tools can be automated or manual. Related to Messaoudi et al. (2015) where

they propose using the term “framework” as a description of the toolset to produce a

game, we would rather call it a production pipeline. The production pipeline can be

thought of as a factory assembly line, where many components are assembled by people

with different roles and work task with tools relevant to their specific work task. As we

identified in the case of Assassin’s Creed: Odyssey, many roles with different work

areas are involved in the production. The flow in the production pipeline is the data

generated by the tools. This data can for example be represented as files (e.g. graphical

assets) or database entries (e.g. dialog lines). An important part of the data is metadata

that can be used to steer the flow and to assemble the game.

In our taxonomy (Figure 3) we make a distinction between tools that are part of the

production pipeline (pipeline tools) and those that are not (non-pipeline tools). The

non-pipeline tools are used for other processes involved in game production such as

project planning, testing, marketing etc. It is outside the scope of this paper to go into

any detail of non-pipeline tools. The only exception is that this group includes tools for

making tools, something that is central for the plasticity of the pipeline. For the pipeline

tools we propose that a distinction is made between three different types:

 Product facing tools (in the core engine, typically highly optimized)

 User facing tools (typically with GUIs designed for specific tasks)

 Tool facing tools (integration tools that connect different parts of the pipeline,

middleware that adds certain functionality)

Figure 3: A proposed taxonomy of game production tools.

 -- 13 --

The product facing tools constitutes the core engine that handles the game simulation

and compiles the game for a target platform. This corresponds to the upper, right

rectangle in Figure 2. These components have received a lot of attention in the past

since they typically handle complex tasks such as rendering, physics and AI. In our

taxonomy we do not delve into any such details. The defining characteristic is that these

tools are product facing, i.e. the target platform plays a central role. The building to a

target platform is a complex process that involves transformations and bundling of both

code and assets. A main goal with the product facing tool is performance and quality.

These tools will hence have a strong focus on data structures, algorithms and

optimization.

The user facing tools are designed to support human developers to create game content.

Considering the wide range of competences involved in game production, these tools

vary enormously: writing editors, 2D drawing tools, 3D modelling software, Integrated

Development Environments (IDE) for programmers, audio mixers, etc. A main goal

with user facing tools is to support the creativity and productivity of game developers.

These tools will hence have a strong focus on usability.

The role of the tool facing tools is to create bridges between different tools in the

production pipeline or to add functionality with a middleware. These tools play a

central role for the efficiency in game production. They can be created as extensions,

or plug-ins to the other types of tools (e.g. as an export module) or they can be

standalone programs (e.g. a daemon) that translate and transfer data from one system

to another. These tools hence have a strong focus on interconnectivity and

functionality. Based on the defined tools we can define a game engine according to the

following:

 A core engine is a collection of product facing tools used to compile games

 to be executed on target platforms. (Examples: id Tech 3, Unity core etc.)

 A game engine is a piece of software that contains a core engine and an

arbitrary number of user facing tools.

 A general purpose game engine is a game engine targeted at a broad range of

game genres (Examples: Unity, Unreal).

 A special purpose game engine is a game engine targeted at specific game

genres. (Examples: GameMaker, Construct, Twine etc.)

Note that with these definitions, a core engine is a game engine without any user facing

tools. This was the first type of engines, e.g. the first iterations of id Tech, which were

provided as programming libraries. The definition also includes all game engines

discussed above (e.g. Unity, Unreal, GameMaker). With our definition, a production

pipeline of a game development project (Figure 4) contains a game engine and an

arbitrary number of additional pipeline tools.

 -- 14 --

Figure 4: A model of the game production pipeline.

A typical characteristic of a game production pipeline, apparent from the quotes from

Unity and Unreal above, is its plasticity – tools can be altered or added depending on

the type of game being produced. This can, for example, be to create a design tool that

enables modeling of the game levels of a particular game. Some of the tools used have

this plasticity included in their native design. In other cases new tools are created. As

an example, Unity has inherent functionality to create custom inspectors and panels for

the various game components that are created. It also has support for different type of

plugin extension from third party software through its asset store. Note that the game

engine is drawn with a dashed line in Figure 4 indicating this plasticity. The border

between the game engine and other tools in the production pipeline is not of any major

importance. As long as the integration of the different tools is handled, they can be

located inside the engine or outside.

Depending on the type of game engine, some parts of the production will be conducted

with the user facing tools included in the game engine. Other parts will be running as

separate applications. As long as the tool facing tools are present, it will not make a

fundamental difference. Some connections between the user facing tools and other

parts of the pipeline is done via the tool facing tools, while some connections might be

done manually (represented by a dotted line in Figure 4). There may however be

practical implications of having a user facing tool integrated in the game engine or

provided as a standalone application. When many different types of user facing tools

are integrated in the game engine, there is a risk that the user interface becomes bloated

and the application will be large. With standalone tools the interface can be tailored for

the task and the application can be lightweight. Another aspect, not addressed in the

literature, is the risk associated with giving all developers access to all elements of the

game. There is always a risk for accidental changes or changes from a developer that

is unaware of the implications of the change.

Note that with our proposed taxonomy, the defining element of a game engine is the

core engine. The typical game engine will in addition to the core engine contain a

number of user facing tools. With our taxonomy, the general purpose game engine

corresponds to the “überengine” proposed by Anderson et al. (2008). We do not put a

requirement that the core engine should contain any particular elements. The core

engine for Twine, for example, does not have any components for 3D rendering,

physics etc. but is a relatively simple parser (Klimas, 2009). For a general purpose

engine (such as Unity) the core will have substantially more and complex components.

For complexity reasons, a game engine is not likely to include the whole production

pipeline. Only games developed in small teams in special purpose engines can handle

the whole pipeline in a single application (for instance GameMaker). Even Unity that

includes a lot of user facing tools, e.g. for animation and audio processing, depends on

external tools such as Visual Studio for script editing.

 -- 15 --

It should be noted that this taxonomy is an abstraction and that a real production can

include more complex interconnections. The same modules can for example be shared

between tools. The tools outside the production pipeline can have dependencies on

objects in the production pipeline, e.g. analytics tools have components in game

binaries; planning tools relate to production entities, etc. It is also possible that the same

tool, e.g. Photoshop, is used in both the production pipeline (to create textures) and in

the non-production pipeline (to create promotion material).

DISCUSSION AND CONCLUSIONS
The origin of the study presented in this paper was an attempt to survey what support

game engines have for localization. In that process, it was soon evident that this

question was the wrong question to address. Instead, the presented study was conducted

where we define the tools of a game production pipeline. We argue that everything

should not or could not be supported in a general purpose engine. Still, game engine is

a term that is used in the industry. While problematic in several cases, it is hard to look

away from the fact that it has become a part of the “lingua franca” of game developers.

The examples from the industry, reported by Kotaku (Schreier, 2018) and Eurogamer

(Yin-Poole, 2019), show that it is important to be able to communicate clearly

regarding the production tools. O'Donnell (2014) has addressed the issue and means

that the pipeline is an aspect of game production that is least talked about outside game

development circles. If this statement is seen in relation to the Kotaku and Eurogamer

articles, it seems that there are confusions even within game development projects. The

management of Starbreeze, based on the Eurogamer article, seemed to confuse a core

engine (as Valhalla was reported to be a renderer only) with a production pipeline. The

Kotaku article, where fans reacted to the change of “game engine” reflects the

statement of O'Donnell (2014) – the production pipeline seems to be a concept too

complicated for the layman, hence the use of the term “game engine” as a substitute.

Our approach to nuance the use of the game engine term and put it into a broader

perspective will hopefully help to avoid, or at least minimize the risk of, confusion in

the future – at least in a production setting. As we identified 692 separate roles in a

triple-A game production setting, it is evident that no single piece of software can

accommodate for all these perspectives.

The plasticity of the production pipeline is important and we believe that with our

proposed taxonomy, this plasticity is mirrored. The tool types identified are both

general and specific enough to be able to describe a large number of production

settings. As previous research relating to game engines has pointed out (Anderson et

al., 2008), a game engine can be produced to accommodate for a specific game genre

or technical foundation of a game. The data flow through the production pipeline is

worth to point out as an important factor here; the different tools are handling data in

different ways and the interchange between tools can be more or less automated.

The presented study reveals the need for more close-to-industry research and it is a

challenge to get reliable data, especially in the case of triple-A game production where

legal matters (such as non-disclosure agreements) and the sheer scope of production

makes it a daunting task to research. To get information regarding an in-house game

engine such as Anvil, we had to use unreliable sources such as Wikipedia. The indie

scene seems easier to get access to, due to a more open production environment (partly

thanks to the tradition of sharing knowledge). We would like to point out the

importance that the game research community takes the opportunity to create industry

relevant research to create long-lasting bonds with game developers in all production

setting and of all sizes.

 -- 16 --

Finally, coming back to the original intentions of the presented study; it is interesting

to note that localization and translation is well represented among the professions

involved in a triple-A production (Figure 1 and Table 2). The inherent support for

localization is missing in Unity – one of the most popular general purpose engines. But

this does however not mean that all productions using Unity lacks such tools in their

production pipeline. Due to the possibility to expand the production pipeline with

external tools or plugins, localization tools might not be a big problem. It however

becomes a problem for inexperienced developers if they assume that Unity will handle

the whole production pipeline. This was apparent in our previous case study with indie

studios experiencing challenges when localization was added late in the production

process (Toftedahl et al., 2018).

FUTURE RESEARCH
Since the original idea of the paper was to understand how built-in functions affects

game production, we have some suggestions for future research. When identifying the

commonly used available game engines, we noticed that the origins of them differ.

Unreal has its origins as an in-house engine, made available publically at a later stage

in its life cycle, while Unity was created as an openly available product from the

beginning. How these different origins affected the included tools and pipeline

connections is a question for future studies to analyze.

ACKNOWLEDGMENTS
This research is funded by the EU Interreg ÖKS project Game Hub Scandinavia 2.0.

BIBLIOGRAPHY
Anderson, E. F. (2011, 2011). A Classification of Scripting Systems for Entertainment

and Serious Computer Games. Paper presented at the 2011 Third International

Conference on Games and Virtual Worlds for Serious Applications.

Anderson, E. F., Engel, S., Comninos, P., & McLoughlin, L. (2008). The case for

research in game engine architecture. Paper presented at the Proceedings of

the 2008 Conference on Future Play Research, Play, Share - Future Play '08.

Blow, J. (2004). Game Development: Harder than you think. Queue, 1(10), 28.

doi:10.1145/971564.971590

Bolding, J. (2019). Steam now has 30,000 games. https://www.pcgamer.com/steam-

now-has-30000-games/: PC Gamer.

Egenfeldt-Nielsen, S., Smith, J. H., & Tosca, S. P. (2016). Understanding video games:

The essential introduction (3 ed.): Routledge.

Epic Games. (2018). Unreal Engine [General Purpose Game Engine].

www.unrealengine.com: Epic Games.

Gregory, J. (2014). Game engine architecture: AK Peters/CRC Press.

Hagen, U. (2009). Where do Game Design Ideas Come From? Innovation and

Recycling in Games Developed in Sweden. Breaking New Ground: Innovation

in Games, Play, Practice and Theory. Proceedings of DiGRA 2009.

Klimas, C. (2009). Twine [Special Purpose Game Engine]. https://twinery.org.

Messaoudi, F., Simon, G., & Ksentini, A. (2015, 2015). Dissecting games engines: The

case of Unity3D.

Murphy-Hill, E., Zimmermann, T., & Nagappan, N. (2014). Cowboys, ankle sprains,

and keepers of quality: How is video game development different from software

development? Paper presented at the Proceedings of the 36th International

Conference on Software Engineering.

O'Donnell, C. (2009). The everyday lives of video game developers: Experimentally

understanding underlying systems/structures. Transformative Works and

Cultures, 2.

https://www.pcgamer.com/steam-now-has-30000-games/:
https://www.pcgamer.com/steam-now-has-30000-games/:
http://www.unrealengine.com/
https://twinery.org/

 -- 17 --

O'Donnell, C. (2014). Developer's Dilemma: The Secret World of Videogame Creators:

The MIT Press.

O'Hagan, M., & Mangiron, C. (2013). Game Localization: Translating for the global

digital entertainment industry (Vol. 106): John Benjamins Publishing.

Payne, M. T., & Steirer, G. (2014). Redesigning game industries studies. Creative

Industries Journal, 7(1), 67-71. doi:10.1080/17510694.2014.892292

Pereira, L. S., & Bernardes, M. M. S. (2018). Aspects of Independent Game

Production: An Exploratory Study. Comput. Entertain., 16(4), 1-16.

doi:10.1145/3276322

Schreier, J. (2018). The Controversy Over Bethesda's 'Game Engine' Is Misguided.

https://kotaku.com/the-controversy-over-bethesdas-game-engine-is-

misguided-1830435351: Kotaku.

Scirra. (2018). Construct [Special Purpose Game Engine]. www.construct.net: Scirra

Ltd.

tobyfox. (2015). Undertale [Computer game]: tobyfox.

Toftedahl, M., Backlund, P., & Engström, H. (2018). Localization from an Indie Game

Production Perspective: Why, When and How? Paper presented at the DiGRA

'18 - Proceedings of the 2018 DiGRA International Conference: The Game is

the Message, Torino, Italy.

Tschang, F. T., & Szczypula, J. (2006). Idea creation, constructivism and evolution as

key characteristics in the videogame artifact design process. European

management journal, 24(4), 270-287.

Ubisoft. (2018). Assassin's Creed: Odyssey [Computer Game]: Ubisoft.

UBM. (2018). 2019 GDC State of the Game Industry. Retrieved from

http://reg.gdconf.com/GDC-State-of-Game-Industry-2019:

Unity Technologies. (2018). Unity [General Purpose Game Engine].

https://unity3d.com/unity.

Wang, A. I., & Nordmark, N. (2015). Software architectures and the creative processes

in game development. Paper presented at the International Conference on

Entertainment Computing.

Whitson, J. R. (2018). Voodoo software and boundary objects in game development:

How developers collaborate and conflict with game engines and art tools. New

Media & Society, 20(7), 2315-2332. doi:10.1177/1461444817715020

Wikipedia. (2018). AnvilNext. Retrieved 2019-01-25

https://en.wikipedia.org/wiki/AnvilNext

Yin-Poole, W. (2019). The fall of Starbreeze.

https://www.eurogamer.net/articles/2019-01-28-the-fall-of-swedish-game-

wonder-starbreeze: Eurogamer.

YoYo Games. (2018). GameMaker [Special Purpose Game Engine].

www.yoyogames.com: YoYo Games.

Zackariasson, P., Styhre, A., & Wilson, T. L. (2006). Phronesis and creativity:

Knowledge work in video game development. Creativity and Innovation

Management, 15(4), 419-429.

1 https://store.steampowered.com/sale/2018_so_far_top_sellers/, accessed 2019-01-20
2 https://store.steampowered.com/sale/2016_top_sellers/, accessed 2019-01-20
3 https://itch.io/game-development/engines/most-projects, accessed 2018-12-20
4 https://steamdb.info/
5 https://steamspy.com/
6 https://github.com/limdingwen/Steam-Engines, accessed 2018-12-20
7 https://www.lexaloffle.com/pico-8.php, accessed 2018-01-16
8 http://www.rpgmakerweb.com/, accessed 2018-01-16
9 https://unity3d.com/what-is-a-game-engine, accessed 2018-01-15

ENDNOTES

https://kotaku.com/the-controversy-over-bethesdas-game-engine-is-misguided-1830435351:
https://kotaku.com/the-controversy-over-bethesdas-game-engine-is-misguided-1830435351:
http://www.construct.net/
http://reg.gdconf.com/GDC-State-of-Game-Industry-2019:
https://unity3d.com/unity
https://en.wikipedia.org/wiki/AnvilNext
https://www.eurogamer.net/articles/2019-01-28-the-fall-of-swedish-game-wonder-starbreeze:
https://www.eurogamer.net/articles/2019-01-28-the-fall-of-swedish-game-wonder-starbreeze:
http://www.yoyogames.com/
https://store.steampowered.com/sale/2018_so_far_top_sellers/
https://store.steampowered.com/sale/2016_top_sellers/
https://steamdb.info/
https://steamspy.com/
https://github.com/limdingwen/Steam-Engines
https://www.lexaloffle.com/pico-8.php
http://www.rpgmakerweb.com/
https://unity3d.com/what-is-a-game-engine

