

1

A Platform-Independent Model for Videogame Gameplay

Specification

Emanuel Montero Reyno and José Á. Carsí Cubel

Software Engineering and Information Systems Research Group

Department of Information Systems and Computation

Technical University of Valencia

Camino de Vera s/n. 46022 Valencia (Spain)

E-mail: {emontero, pcarsi}@dsic.upv.es

ABSTRACT

Videogames require a more precise specification language to

define and communicate gameplay than rules written in natural

language. The proposed platform-independent model for

videogame gameplay specification offers game designers a

precise model to describe, analyze and communicate gameplay

from early stages of development. The social context diagram

defines how many players and teams interact with the game

system. The structure diagram defines the game elements,

attributes and events that compose the game system. And the

rule set defines the game system behavior, implicitly specifying

gameplay through precisely defined declarative rules.

KEYWORDS

Videogame Gameplay Specification, Game Design, Platform-

Independent Model.

1. INTRODUCTION

Videogames currently lack a precise specification language to

define and communicate gameplay [3]. Rules are the most

common conceptual tool used for these game design purposes;

however they are typically written in natural language, which is

ambiguous and imprecise. This ambiguity creates a gap between

game design and implementation since natural language game

design specification is unclear and the game code

implementation becomes the game specification. Re-designing

games at the implementation level becomes a difficult,

expensive and error-prone task, which ultimately leads to games

of poor technical quality.

We propose a more precise game specification language

through platform-independent models to define and

communicate gameplay at a high level of technical abstraction.

Redesigning games at design level is easier and conceptually

cleaner than reimplementing code. In addition, the conceptual

gap between game design and implementation can be easily

addressed, allowing an automatic transformation from the high-

level specification to other software artifacts and in turn a final

compilation to code. This model-driven game development

methodology reduces implementation time and errors, which

ultimately leads to games of a higher technical quality.

The main goal of this paper is to provide an initial platform-

independent model for gameplay specification. For simplicity,

we only consider videogames, although most of the reasoning

and conceptualization can be easily transferred to traditional

games in general. This precise, technology-independent

gameplay model is intended to replace natural language as the

gameplay specification language for game designers.

2. STATE OF THE ART

Ludology, the study of games in general and videogames in

particular, has pointed out the need to create models in order to

explain the mechanics of games. This lack of a notation to

precisely define games and game mechanics has been a

traditional game design problem. Gameplay is considered the

most distinguishing factor of games, since it reflects the overall

experience during the interaction with the game system. Many

theories and notations have unsuccessfully tried to capture the

essence of gameplay in a single representation or diagram.

Frasca [5] defined video games as simulations, a software

system that models the behavior of a real or fictional system. In

this sense, rules define the simulation behavior. Frasca also

characterized three kinds of rules: manipulation rules, goal rules

and meta-rules. Manipulation rules define how players interact

with the game, i.e., what players can do in the game. Goal rules

define how players achieve game victory conditions i.e., how to

win or lose the game. Meta-rules define how game rules can be

modified, i.e., how the player can change the game. Setting

aside game meta-rules, which are not mandatory for gameplay

definition, manipulation rules and goal rules are a good

intellectual tool for defining game system behavior.

Unfortunately, this rule definition relies heavily on natural

language and, consequently, lacks a clear notation and precise

semantics for game behavior definition.

Salen and Zimmerman [9] also considered rules as the core

element that implicitly defines gameplay. They proposed the

use of three levels of rules for game design: operational rules,

constitutive rules and implicit rules. Operational rules are the

guidelines that players require to play the game, i.e., the rules of

play. Constitutive rules are the underlying logical and

mathematical structures of the game. Implicit rules are the

assumed etiquette conventions of good conduct among players.

Setting aside implicit rules, which again are not mandatory for

gameplay definition, operational and constitutive rules are a

good intellectual tool for defining game system behavior.

Nevertheless, this rule definition relies heavily on natural

language and, consequently, lacks a clear notation and precise

semantics.

Djaouti et al [4] have identified very similar rules which appear

in a great variety of games. These rules correspond to common

rule templates which define gameplay. These game bricks can

2

be organized to build gameplay, which makes them a good

intellectual tool for defining game system behavior. However

they still lack a formal notation for giving a more precise

meaning to each game brick or rule template.

Grünvogel [6] proposed the use of a mathematical model

(Abstract State Machines) to precisely describe games as

systems of objects whose state is changed by the players and

other game objects. The use of a mathematical formalism to

describe the game system behavior is a very precise

specification method and completely removes the ambiguity of

natural language. Unfortunately, game designers without a solid

knowledge of this mathematical notation would have problems

expressing their designs. It is important, therefore, to provide a

designer-friendly representation of the game specification

concepts.

Following Koster’s [7] proposal of a visual, iconic and non-

textual notation for game design, Bura [2] reuses a

mathematical modeling language (Petri Nets) to specify rules in

iconic diagrams. Nodes and links represent concrete game

design concepts such as atomic transitions, texts, resource

sources, storage, sinks and flows. The final diagram

specification is difficult to understand and to scale, but it still

gives a first approach to game design modeling without natural

language.

The aim of our work is to propose a clear gameplay

specification through a formal and precise rule set definition,

extending all of previous research without the ambiguity of

natural language.

3. A PLATFORM-INDEPENDENT GAME MODEL

A model is a simplified and abstract representation of a system

that allows engineers to reason about that system focusing on its

relevant details. Models are used in software development to

precisely communicate key system characteristics [1]. In this

case, we propose the use of models as a game design

specification tool with a simplified and abstract representation

of game systems.

In Model-Driven Software Engineering, a model can be

independent of the specific technological platform used to

implement the system. Technology implementation details are

ignored at this level of abstraction and will be addressed at

lower levels of abstraction either manually or through platform-

specific models. In game design, platform-independent models

become a technology-independent tool at a high level of

abstraction, allowing clear game conceptualization without the

distraction of specific implementation details.

Because many aspects of a system might be of interest, various

modeling concepts and notations can be used to highlight one or

more particular perspectives, or views, of that system [1]. In

this multi-model approach to game design, various game design

models highlight different views of interest of a game,

conforming a multi-dimensional game specification. Although

games have a great variety of perspectives, we propose an

initial gameplay specification through the social context,

internal game structure and rule set definition. Other game

perspectives are outside the scope of this work and will be

approached in future research. In the following subsections, we

will look closely at each view of the initial platform-

independent model for videogame gameplay specification.

3.1. Social Context Diagram

Videogames are a social activity which is defined in a context

where players interact with each other and with a software game

system. Traditionally, videogames only allowed one or two

players to play the game competing with the game system. More

recently, it is common to allow hundreds of online players to

cooperate in a single network game. It is therefore important to

precisely define how many people can play a game at the same

time since the internal game system will have to compute all

their inputs. The social context diagram specifies the human

context that surrounds the game system with a clear and concise

visual representation.

As a first social context example, let’s look at the traditional

competition between one or two players against the game

system. Figure 1 shows the corresponding diagram. In the

diagram, players are represented with a unique human node,

which is complemented with a pair of sub-indexes indicating

the minimum and maximum number of participants that the

game allows simultaneously (one and two, respectively). The

software game system is represented with a named box. It is

linked to the players with a straight line, representing that the

game is played by one or two players.

Figure 1: Example of a

traditional social context

diagram.

Now, let’s assume that a console videogame is to be played at

the same time by a minimum of one player and a maximum of

four players, which is a typical game scenario in many console

party games. All the players team up in cooperation against the

game challenges and internally-controlled enemies. Figure 2

shows the corresponding social context diagram. The

cooperation relationship encloses all the members that can play

the game on the same team in a discontinuous circle. In this

case, the game system box is linked to the team circle,

indicating that the game is played by a team of four players

instead of four individual players.

Figure 2: Example of a

cooperative social context

diagram.

Figure 3 shows the social context meta-model, which defines all

the primitives needed to specify any game social context.

Following UML notation, each meta-class in the social context

meta-model specifies the structure of each social context

primitive that can be used in the social context models. The

player meta-class has a minimum and maximum cardinality,

which defines how many individual players can access the game

Traditional

Game

System
1..2

Cooperative

Game

System
1..4

3

simultaneously. The team meta-class also has a minimum and

maximum cardinality to indicate how many teams can play the

game simultaneously. Both the player and team meta-classes

have a descriptive role name to portray their function in the

game. The team meta-class is an aggregation of the player meta-

class, indicating that a team is a group of players. The game

system meta-class has a descriptive name and is associated to

each player or team that can play the game. Note that the meta-

model definition establishes an ontological framework to fully

understand and communicate social context game concepts.

From this social context perspective, players are defined as the

human component of games, teams are groups of players, and

the game system needs to keep track of how many players and

teams can play the game simultaneously since the game system

will have to cope with all their inputs.

Figure 3: Social context

diagram meta-model.

In order to fully understand the proposed game social context

conceptualization, we present a more complex example: a

soccer game. Let’s assume that a multi-player soccer game is

played by two teams. Each team is composed of a goal keeper

and up to ten field players. Both teams compete actively to win

the match. A variable number of spectators can access the game

to enjoy watching the match. Figure 4 shows the corresponding

social context diagram. For purposes of conciseness, when the

minimum and maximum cardinalities are the same, we only

write the number once, as in the team cardinality. This forces

the game to have exactly two teams. Each player node is

annotated with a descriptive role name which helps in the

identification of player behaviors: field player, goalkeeper and

spectator. The maximum number of spectators can be unlimited,

which is denoted with an asterisk in its maximum cardinality.

Figure 4: Example of a more

complex social context

diagram.

Finally, the game system is played by the two teams and the

spectators. Note that the social context diagram concepts can

also be applied to non-digital games, becoming a simple and

powerful specification tool for traditional game design.

In order to define how each team and each player participate in

the game, we need to look at the internal game system from two

different game perspectives.

3.2. Structure Diagram

Games have a rigid internal structure that defines the existing

elements of the game system. This structural definition is the

foundation for the rules that will specify the game system

behavior.

Figure 5 shows a structure diagram that defines the game

elements of a simple space shooter game. Let’s assume that the

game (accordingly named Alien Invaders) features two

spaceships, controlled by each player, that fight alien invaders

in a space journey. Each player shoots and avoids space

asteroids and alien invaders in order to gain points for a high

score. In the structure diagram, the game system is represented

with a discontinuous box that displays the game name, i.e.,

Alien Invaders, and includes all the game elements of the game

system. Each game element is represented by a rounded box. In

order to visually differentiate each game element type, all the

rounded boxes have a distinctive icon. Player characters, such

as the spaceships, are game characters that are controlled by a

human player. These player characters are represented in the

diagram with a human icon with filled-in head. Non-player

characters, such as the alien invaders, are game characters that

are internally controlled by the Artificial Intelligence (AI) of the

game. Non-player characters are represented in the diagram

with a human icon with a hollow head. The other game

elements, such as the asteroids or bullets, are passive game

objects that are represented in the diagram with a small black

box icon. Underneath the game element icon, there is a

cardinality that expresses how many game elements can exist

simultaneously in the game system. The spaceship player

character can be repeated once or twice, and all other game

elements can exist in a variable number between zero and

infinity. All game element rounded boxes have different

compartments to include game attributes, events and actions.

Attributes are the descriptive data that characterize a game

element. Each attribute has a descriptive name, a data type and,

optionally, an initial value. The spaceship player character has

integer attributes for managing the player character’s lives,

score and high score which are complemented with their initial

values of three lives and zero points. Both the alien non-player

character and the asteroid game element have an integer

attribute to control the amount of points that will be added to

the player character’s score. Finally, both spaceship and alien

bullets have no attributes.

Events define game state changes and can be invoked from the

rule set to check or produce a game system change. Events have

a descriptive name that implicitly defines how they behave. In

Figure 5, the game system has a collide event that is supposed

to check if two game elements intersect in the space. Asteroids

also have a destroy event that is supposed to eliminate the game

element from the system. Note that the concrete event definition

is outside the scope of this design level and should be addressed

Soccer

Game

System

0..*
Spectator

Goal Keeper

1..10
Field Player

2

4

later by associating an adequate method definition to each game

event. Outcomes are events a special kind that define game

victory conditions such as victory, failure and draw. The

spaceship player character has a failure outcome to indicate that

it can lose the game.

Figure 5: Example of a

structure diagram for a space

shooter game.

All game characters have game actions to control them, which

drive the behavior of game characters. Both the spaceship

player character and the alien non-player character can move

and shoot, with the only difference that the spaceship is

controlled by a human player and the alien is controlled by the

AI of the game. Note that game events can be passive (event) or

active (action). A spaceship player character can both receive a

respawn event, and it can actively move and shoot. At a lower

abstraction level, player character actions will be mapped to the

input controllers, allowing the human players to directly control

the course of the game through their character’s actions.

In some cases, the game structure needs more complex

primitives to express the existing relationships between game

elements. It is common that some game elements own other

game elements, such as the spaceship player character owning

the bullets it shoots. In order to express this owning relationship

between game elements in the diagram, a straight line is used to

link their rounded boxes. The rhomboid end of the link points to

the container game element, indicating that the spaceship owns

bullets and not the other way around. Other UML relationships

can be introduced in the game structure diagram, but, for the

sake of simplicity, we only consider composite aggregation as a

means to express the owning relationship.

Figure 6 shows the game structure meta-model that defines all

the primitives needed to specify any game system structure. The

structure meta-model definition establishes an ontological

framework to fully understand and communicate internal game

structure concepts. From this internal structure perspective, the

game system contains all the game elements. Each of them has a

minimum and maximum cardinality to indicate how many

particular element instances can exist in the game

simultaneously. The game system and each game element have

a different number of game attributes and events. Game

elements can also have owning relationships with other game

elements. Game characters are game elements of a special type

that are controlled with game actions and can be further

differentiated into player characters and non-player characters,

depending on whether a human player or the game AI is behind

its controls.

Figure 6: Structure diagram

meta-model.

Note that the player character meta-class is associated to the

player meta-class previously defined in the social context meta-

model. This means that each player character in the structure

diagram has to be associated to a human player node in the

context diagram. Continuing with the Alien Invaders structure

diagram example shown in

Figure 5, the spaceship player character can be related to the

human node of the traditional context diagram (see Figure 1).

This gives a precise mapping between player characters and

their social context. Each of the two possible spaceship player

characters of the internal game structure is mapped to each of

the two possible human players of the social context.

With the social context and the internal game system structure

precisely defined, we still need to define how the game system

behaves. For this purpose, we need to define gameplay from yet

another perspective.

3.3. Rule Set Diagram

Games have a complex behavior with which the players

interact. The core complexity of game behavior lies inside the

software game system that processes player inputs to generate

game outputs. Game system behavior can be expressed with

rules that implicitly define gameplay. Rules have been

traditionally used as a common and widespread conceptual tool

to specify game behavior. One of the main advantages of rules

is that there is a higher abstraction level than with code,

enabling faster and easier manipulation of gameplay. The main

disadvantage is that rules are traditionally expressed in natural

language and have to be manually translated to code in order to

execute the game and test gameplay. Using precisely defined

rules not only benefits game behavior specification and

 Spaceship

Lives : Int = 3

Score : Int = 0

HighScore : Int = 0

Respawn : Event

Failure : Outcome

Move : Action

Shoot : Action

1..2
0..*

Alien Invaders

Collide : Event

Asteroid

Points : Int = 10

Destroy : Event

0..*

Bullet

Create : Event

Destroy : Event

0..*
 AlienBullet

Create : Event

Destroy : Event

0..*

 Alien

Points : Int = 50

Destroy : Event

Move : Action

Shoot : Action

0..*

5

communication, but it also allows automatic transformation to

other software artifacts such as state-machines [8], bridging the

gap between game design and implementation.

Figure 7: Example of a rule

set for a space shooter game.

In order to illustrate how to specify game behavior with

precisely defined rules, let’s continue with the space shooter

game of the previous examples. Its rules can be expressed in the

following natural language specification: two spaceships shoot

bullets in order to destroy aliens and asteroids, gaining points

for a high score. The spaceships also have to avoid aliens, alien

bullets and asteroids in order not to lose their lives and

consequently lose the game. Figure 7 shows the corresponding

rule set with a more precise syntax and semantics. We assume

that the rule set specification contains a variable number of

unique rules, which are numbered accordingly in the leftmost

side of the example. The rule order is irrelevant since rules can

be triggered in any order. Each rule is defined by pre-conditions

and post-conditions, which are the conditions that the game has

to be consistent with before and after the rule is applied. In the

diagram, pre-conditions are stated before the rule arrow, and

post-conditions after the rule arrow. Following the first rule of

Figure 7, pre-conditions state the condition that triggers the rule

(such as if the spaceship shoot action occurs), and post-

conditions state which effects are triggered by the rule (such as

if a bullet is created). Note that the semantics of pre- and post-

conditions are slightly different. A sequence of pre-conditions

has to be true simultaneously for the rule to be triggered. On the

other hand, post-conditions have to be true after the rule is

applied, but this doesn’t necessarily mean they have to occur

simultaneously. Following the third rule of Figure 7, the post-

conditions state that the spaceship player character has to lose

one life and respawn and the alien non player character has to

be destroyed. These three post-conditions have to occur after

the rule is applied, but not in any particular order. The

spaceship player character may react before the alien non-player

character and the rule conditions still hold true. The order in

which conditions are written in a rule, therefore, is irrelevant

both in pre- and post-conditions.

Pre-conditions and post-conditions are constructed with all

game elements, attributes, events and actions previously

specified in the game structure diagram (see

Figure 5). This clarifies the rule semantics, giving a more

precise meaning than natural language. The only ambiguity can

be associated to the concrete semantics of game events, such as

collide or destroy.

 shows the rule set meta-model that defines all the primitives

needed to specify any game system behavior with a rule set.

Note that the meta-model definition establishes an ontological

framework to fully understand and communicate internal game

behavior concepts. A rule set is a collection of individual rules.

Each rule is composed of one or more pre-conditions and post-

conditions. Rules can be further differentiated into action rules,

internal rules and goals.

Figure 8: Rule set meta-model.

Action rules express the core gameplay mechanics that players

can use through their player character actions. Intuitively, action

rules express what players can do through their actions in a

similar but more precise way than Frasca’s [5] manipulation

rules. If the spaceship player character performs its shoot

action, then a bullet is created. Therefore, the player behind the

spaceship can create bullets using the shoot action. The action

rule meta-class defines that all action rules contain at least one

action in the pre-condition.

Internal game rules express the core dynamics of the internal

game system. Intuitively, internal game rules define how the

game system behaves. If the spaceship player character collides

with the alien non-player character, then the spaceship loses one

(1) Spaceship.Shoot Bullet.Create

(2) Alien.Shoot AlienBullet.Create

(3) Collide (Spaceship, Alien)
Spaceship.Lives -= 1,

Spaceship.Respawn,

Alien.Destroy

(4) Collide (Spaceship,AlienBulllet)
Spaceship.Lives -= 1,

Spaceship.Respawn,

AllienBullet.Destroy

(5) Collide (Spaceship, Asteroid)
Spaceship.Lives -= 1,

Spaceship.Respawn,

Asteroid.Destroy

(6) Collide (Bullet, Alien)

Spaceship.Score += Alien.Points,

Alien.Destroy,

Bullet.Destroy

(7) Collide (Bullet,Asteroid)

Spaceship.Score += Asteroid.Points,

Asteroid.Destroy,

Bullet.Destroy

(8) Spaceship.HighScore<Spaceship.Score Spaceship.HighScore=Spaceship.Score

(9) Spaceship.Lives = 0 Spaceship.Failure

6

life and respawns, and the alien is destroyed. In internal game

rules, both pre-conditions and post-conditions contain game

expressions with attributes or events. An attribute expression is

a statement with a left and a right side which can include logical

operators, game attributes, constant values or yet another

attribute expression. If the attribute expression is a pre-

condition, it states a condition that must occur in order to

execute the rule, such as if the spaceship player character lives

are zero. On the other hand, if the attribute expression is a post-

condition, it states the consequences of the rule execution, such

as if the spaceship player character lives become zero. Note

that, syntactically, both attribute expressions are denoted

equally, but their semantics differ depending on the side of the

rule in which they are placed, becoming pre-conditions or post-

conditions. Game events can also be used as game expressions.

If the event expression is a pre-condition, it states which event

has to occur for the rule to be executed, such as if a bullet

collides with the alien. If the event expression is a post-

condition, it states which events occur as a consequence of the

rule execution, such as if the alien is destroyed. In this case,

note that some events can be used to check the internal game

state (as pre-conditions) or to change the internal game state (as

post-conditions).

Goals are the rules that lead to game victory conditions such as

victory, failure and draw. In goals, the post-condition have to

contain at least one game outcome event, and the pre-condition

usually contains game expressions with attributes or events. If

the spaceship player character lives are zero, then it receives the

failure outcome event, consequently losing the game. Note that

goals can be positive and negative depending on the game

outcome that the player has to achieve or avoid in order to win

the game. In the previous example, the game has a negative goal

which players have to avoid. Since the game social context

diagram defines that players are not united in cooperation (see

Figure 1), the negative outcome event can only be applied to an

individual player. This means that the first player character can

lose the game while the second player character is still playing

and vice versa. If the social context diagram would have

specified a cooperative two-player team, the outcome could

have been shared by both players using the team name in the

rule definition (Team.failure instead of Spaceship.failure in

Figure 7). This expressive freedom is possible because the

outcome meta-class in the rule set meta-model is associated to

the player character meta-class in the structure diagram meta-

model, which, in turn, is associated to the player and team meta-

classes of the social context meta-model. All the game

perspectives of this initial platform-independent model for

videogame specification are interconnected since they are

intended to define the same game system behavior through

different but complementary views of interest.

4. CONCLUSIONS AND FUTURE WORK

With the proposed platform-independent model for videogame

gameplay specification, game designers can precisely describe,

analyze and communicate gameplay from early stages of

development. The social context diagram defines how many

players and teams interact with the game system. The structure

diagram defines the game elements, attributes and events that

compose the game system. And the rule set defines the game

system behavior, implicitly specifying gameplay through

precisely defined declarative rules.

As this work shows, all three meta-models serve as a more

precise conceptual foundation for game design than natural

language. All key characteristics of the gameplay are included

in the corresponding perspective, leading to a clear and concise

game representation without technical implementation details.

The relationships between the social context, the inner game

structure and the rule set have been introduced through a simple

example of game specification. Game designers now have a

powerful language to express gameplay in a clear and precise

specification.

Other key game perspectives still remain to be addressed in

further research since the proposed meta-model only focuses on

gameplay definition. These are some snapshots of the remaining

game perspectives of a multi-model approach to game design

specification:

 Graphic interface design defines how to visually present

all game information to the player through screen layouts

and game world representations. It is also important to

define transitions between screens in order to specify how

players navigate the game graphical interface to access

information.

 Audio design defines how to convey sound and music to

the player. Audio layouts allow game designers to

precisely define when a sound is triggered or which music

is played at each moment of the game. The set of audio

design primitives includes audio events, music playlists,

etc.

 Artificial Intelligence defines the behavior of all non-

player characters that populate the game world, in order to

express how these characters move, think, act and react.

 Game storytelling is another key perspective in story-

driven games. Game designers need to specify how the

story is structured and conveyed to the players using a set

of narrative primitives such as story events, linear and

non-linear plot structures, dialogs, scripted events,

cinematics, etc.

 Level design specifies how the game world content is

packaged into levels. A level editor can be automatically

generated from a precise level specification, which allows

a fast and easy creation of game world content.

Nonetheless, not all game perspectives can be defined

independently of the underlying technology platform. Control

layout design requires a platform-specific model since each

technology platform (such as PCs, handheld devices, consoles

and arcades) offers different controllers, ranging from the

standard keyboard and mouse to highly specific controllers

(such as joysticks, steering wheels, musical instruments, etc).

Control game designers need to precisely specify which game

actions are mapped to the specific technology controllers in

order for the players to play.

All game perspectives conform to a unique game meta-model

that has to be validated by professional game designers. It is

also necessary to estimate the practical benefits of a precise

game specification in real projects.

In summary, this multi-model approach to game design

specification represents the first step in a model-driven game

7

development methodology where the high-level game design

specification becomes the primary software artifact, replacing

heavy-weighted natural language documentation in traditional

game development. The platform-independent game design

model will be semi-automatically translated to a more concrete

platform-specific model that in turn will be compiled into code.

This incremental approach keeps track of all design decisions at

the different levels of technical abstraction, allowing for higher

reuse and optimization of repetitive and time-consuming tasks.

Model-driven game development methodology is intended to

reduce implementation time and errors, which will ultimately

lead to games of higher technical quality.

ACKONWLEDGEMENTS

We are grateful to the Spanish Ministry of Science and

Technology since our research has been partially developed in

the MOMENT project under reference TIN2006-15175-C05-

01. We are also grateful to the Technical University of Valencia

for granting a formation scholarship to research personnel under

reference 199880998.

REFERENCES

[1] Brown, A. “An introduction to Model Driven

Architecture”. Available at

http://www.ibm.com/developerworks/rational/library/3

100.html.

[2] Bura, S. “A Game Grammar”. Available at

http://users.skynet.be/bura/diagrams/.

[3] Church, D. “Formal Abstract Design Tools” in Game

Developer Magazine, August 1999.

[4] Djaouti, D., Alvarez, J., Jessel, J. P., Methe, G.,

Molinier, P. “A Gameplay Definition through

Videogame Classification”. International Journal of

Computer Games Technology, vol. 2008, Hindawi

Publishing Corporation, February 2008.

[5] Frasca, G. “Simulation versus narrative: introduction

to ludology” in The Videogame Theory Reader, pp.

221–236, Routledge, London, UK, 2003.

[6] Grünvogel, S. M. “Formal Models and Game Design”

in Game Studies: The International Journal of

Computer Game Research, vol. 5, Issue 1, October

2005.

[7] Koster, R., “A grammar of gameplay”. Available at

http://www.theoryoffun.com/grammar/gdc2005.htm.

[8] Montero, E., Carsí, J. A. “Model-Driven Game

Development: 2D Platform Game Prototyping”. 9th

International Conference on Intelligent Games and

Simulation (Game-On’08), Valencia, Spain, November

2008.

[9] Salen, K., Zimmerman, E. “Rules of Play”. The MIT

Press, 2004.

