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ABSTRACT 
Much analysis of games focuses, understandably, on their 
mechanics and the resulting audience experiences. 
Similarly, many genres of games are understood at the level 
of mechanics. But there is also the persistent sense that a 
deeper level of analysis would be useful, and a number of 
proposals have been made that attempt to look toward a 
level that undergirds mechanics. This paper focuses on a 
particular approach of this sort—operational logics—first 
proposed by Noah Wardrip-Fruin (2005) and since then 
discussed by authors such as Michael Mateas (2006) and 
Ian Bogost (2007). Operational logics connect fundamental 
abstract operations, which determine the state evolution of a 
system, with how they are understood at a human level. In 
this paper we expand on the concept of operational logics, 
offering a more detailed and rigorous discussion than 
provided in earlier accounts, setting the stage for more 
effective future use of logics as an analytical tool. In 
particular, we clarify that an operational logic defines an 
authoring (representational) strategy, supported by abstract 
processes or lower-level logics, for specifying the behaviors 
a system must exhibit in order to be understood as 
representing a specified domain to a specified audience. We 
provide detailed discussion of graphical and resource 
management logics, as well as explaining problems with 
certain earlier expansions of the term (e.g., to file handling 
and interactive fiction’s riddles). 
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INTRODUCTION 
Games can be studied at many levels of abstraction, and in 
relationship to many social, cultural, psychological, media-
theoretic, and formal phenomena. This multivalent nature of 
games contributes to the methodological pluralism seen in 
the game studies community. Montfort and Bogost 
introduce a five level model for the analysis of digital 
artifacts as a framework for organizing this plurality of 
methods and viewpoints [10]. The levels range from 
reception/operation through interface, form/function, code 

and finally platform. In the context of games, the first three 
levels are the traditional purview of game studies, with a 
focus, respectively, on the reception of the artifact in the 
social and cultural field; the game interface and the visual 
and auditory representational strategies; and the mechanics, 
rules, formal, and simulational elements of games. The last 
two levels, code and platform, have been far less studied, 
with the code level focusing on deep readings of software 
structures, and platform studies focusing on deep readings 
of the hardware and system abstractions that underlie 
software. In this paper we present operational logics as a 
unit of analysis centered at the code and platform levels, but 
that connects technical implementation strategies with 
authorial and audience meanings. Operational logics are the 
fundamental abstract operations—with effective 
interpretations available to both authors and players—that 
determine the state evolution of the system and underwrite 
the gameplay. As such they provide “deep cores” that bind 
together issues ranging from the platform to reception level 
for specific representational domains.  

Wardrip-Fruin introduced the notion of operational logics 
(though did not name them as such until his 2006 
dissertation [14]) in a 2005 paper exploring the different 
ways in which interactive texts can be made playable [13]. 
To briefly recapitulate the argument of that paper, Wardrip-
Fruin argues that, rather than focusing on the question of 
which interactive experiences are or are not games, it is 
more fruitful to focus on the analytic category of the 
playable, and to ask of various interactive experiences “in 
what way is this experience playable?” He then introduces 
the notion of operational logics as a way of analyzing how a 
given interactive experience structures the space of play, 
particularly focusing on two families of operational logics: 
graphical logics and textual logics. Wardrip-Fruin further 
developed the idea of operational logics in his dissertation 
[14] and in Expressive Processing [15], though not 
providing a wholly consistent account across these three 
treatments. Other authors, such as Mateas [7] and Bogost 
[4], have further expanded on the notion of operational 
logics, but generally as a niche discussion in the context of 
a larger project; even Wardrip-Fruin, in his three different 
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accounts, always introduces operational logics in the 
context of making a larger argument. In this paper we seek 
to define operational logics as a first-class unit of analysis, 
offering a more detailed and rigorous discussion than 
provided in earlier accounts. We discuss graphical and 
resource management logics in some detail, outline a 
number of limit cases for the concept of operational logics, 
and then provide and expand a full definition of the 
concept. Finally, we discuss how this work sets the stage 
for the use of operational logics in connecting a number of 
issues in game studies to the emerging area of software 
studies, offering a powerful combination of technical 
grounding with authorial and audience concerns.   

OPERATIONAL LOGICS 
In this section we introduce operational logics with an 
informal discussion of graphical and resource management 
logics. The next section provides a more formal definition 
of operational logics.  

Graphical Logics 
To introduce graphical logics, consider two early 
videogames, Spacewar! (1962) and Pong (1972). In 
Spacewar!, two players control the flight of virtual 
spacecraft. Player controls are clockwise and 
counterclockwise rotation, thrust, fire and hyperspace 
(which jumps the ship to a random location on screen). 
Each player tries to shoot the other while avoiding being hit 
by enemy fire or crashing into the enemy ship, while 
navigating within the gravitational field of a star in the 
center of the screen. A ship is destroyed when it collides 
with a bullet, the other ship, or the star in the center.  

In Pong, a simple table tennis simulator, two players control 
paddles that are able to move vertically along the goal lines 
at the left and right edges of the screen. A simple computer 
controlled opponent can be substituted for one of the 
players. The players volley a ball back and forth; when 
either player misses (the ball fails to collide with the 
paddle), the other player scores. The angle at which the ball 
reflects from the paddle on collision depends on where the 
ball hits the paddle, reflecting at sharper angles towards the 
ends of the paddle.  

Though the fictional worlds of space warfare and table 
tennis are quite distinct from each other, and the two games 
would typically be classified as belonging to distinct game 
genres (the shoot-em-up and sports simulation 
respectively), there are strong similarities between them. 
Both games represent the movement of simulated objects 
(space ships, projectiles, balls, paddles) by constantly 
erasing and redrawing collections of pixels (or, in the 
original Spacewar!, collections of vectors) on the screen. 
Major gameplay events occur when two virtual objects 
collide, naively, when pixels/vectors belonging to one 
virtual object are drawn at the same screen location as 
pixels/vectors belonging to another virtual object. The 
simulated movement of objects is influenced by an 
underlying physics simulation, giving spaceships inertia and 

making them subject to gravity, or changing the angle of a 
ball’s trajectory as a function of where it hits the paddle (the 
physics simulation does not have to obey the physics of our 
world). These similarities constitute operational logics, 
which we, as discussed above, define as fundamental 
abstract operations—with effective interpretations available 
to both authors and players—that determine the state 
evolution of the system and underwrite the gameplay. Both 
Spacewar! and Pong exhibit canonical graphical logics, 
specifically logics of movement, collision detection and 
physics. There’s an additional logic operating in Spacewar!: 
navigation. Navigation involves player-controlled 
(simulated) movement of a (virtual) object in a represented 
space, in this case the movement of space ships in a two-
dimensional field. Pong can be said to make use of 
navigation logic, though it is the degenerate case of 
navigation along a line segment.  

Graphical logics, which underwrite the simulation of spaces 
and objects within spaces, are the most common logics 
employed in videogames, found at the heart of everything 
from the playful Mario games to the gritty Grand Theft 
Auto franchise. Consider the logic of collision detection. 
Collision detection is operating when Pac-Man eats a dot or 
power pill, or is touched by a ghost; it’s operating when the 
player is unable to move through walls in Doom, picks up 
health packs, hits demons with weapons, and is hit by 
demon attacks; it’s operating when the player’s katamari 
picks up or bounces off an object in Katamari Damacy. 
Similar examples can be enumerated for movement, 
navigation, and physics, across the vast majority of 
contemporary and historical games.  

Resource Management Logics 
Before discussing some general properties of operational 
logics, we will examine one more family of logics in this 
section. Consider two other early computer-based games, 
Hamurabi and Oregon Trail. Richard Merrill wrote a land 
management game called The Sumer Game in 1969 in 
FOCAL for the PDP-8. David Ahl ported it to BASIC for 
the PDP-8, and later published an expanded version of the 
program, renamed Hamurabi, in his best-selling book 
BASIC Computer Games [2]. It is in this version that the 
game became well-known among personal computer 
hobbyists, who would type in the program to play the game 
(and, because the game was distributed as source code, 
often tinker with the program to explore variants). In 
Hamurabi the player takes the role of “Hamurabi,” the 
ancient king of “Sumeria.”1  

In this turn-based, text-based game, the player makes a 
series of decisions about land management and the 

                                                           
1 Hamurabi is presumably a shortening of Hammurabi to fit 
in an eight-character file name limit. The game invites 
players to “Try your hand at governing ancient Sumeria” 
(rather than Sumer). 
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allocation of grain. During each of 10 rounds, each 
representing one year, the player decides how many acres 
of land to buy or sell, how many bushels of grain to feed the 
people (20 per person required to avoid starving anyone), 
and how many acres of land to plant (one bushel of grain 
plants 2 acres)2. At each step, the game state consists of the 
population, the number of acres owned, the number of 
bushels of grain owned, and the current price of land in 
bushels per acre.  

As one would expect, feedback loops and tradeoffs exist 
between the various player choices. For example, you can 
only plant as many acres as ten times your population (each 
person can farm 10 acres), and your population grows as 
function of the number of acres owned and the amount of 
stored grain—though more acres and grain are required to 
grow the population by the same absolute value as the 
population gets bigger. Further, random events can strike, 
such as plagues that eliminate half your population and rats 
eating your stored grain. This introduces further tradeoffs 
into the system. For example, the amount of stored grain 
destroyed if a rat infestation strikes increases with the 
amount of total grain stored. This encourages the player to 
minimize the amount of stored grain in order to minimize 
exposure to this risk, yet the player must also maximize the 
amount of stored grain in order to grow their population. 
Finally, there is random fluctuation in the yield per acre 
(number of bushels produced per acre planted) as well as in 
the price per acre, introducing an element of uncertainty 
and encouraging the player to try strategies such as buying 
land low and selling high, which can become necessary in 
low-yield years in order to avoid mass starvation.  

In Oregon Trail the player guides a wagon that is traversing 
the Oregon Trail from Independence Missouri to Oregon’s 
Willamette Valley in 1848. The player’s goal is to reach the 
end of the trail while minimizing the number of party 
members lost along the way. Oregon Trail was developed 
by Don Rawitsch, Bill Heinemann and Paul Dillenberger to 
teach school children about the realities of pioneer life 
along the Oregon Trail in the mid 19th century. The game 
exists in several versions, with the original mainframe 
versions developed in 1971 and released in 1974, and the 
Apple II versions that most players are familiar with first 
released in 1980 with an updated version in 1985.  

At the beginning of the game, players are given a budget for 
equipping their wagon. Purchase decisions include sets of 
clothes (influences health as a function of weather), wagon 
spare parts (wagons break down), food, bullets (can be used 
to hunt as another way of getting food), and so on. Once the 
trip is underway, the player is able to adjust the pace at 
which the wagon moves, rate of consumption of food, 
whether to trade (during trading, the player is offered swaps 
for items in her inventory), the opportunity to hunt (use 

                                                           
2 The simulation constants reported here are based on David 
Ahl’s 1973 BASIC version for the PDP.  

bullets to try to hit game to supplement food), the 
opportunity to rest (costs days, and therefore food, but can 
improve the health of party members and rest oxen) and, at 
the occasional fort, opportunities to purchase items. The 
player must manage tradeoffs between the health of the 
party members, consumption of food, and number of miles 
traversed per day. Additionally, the player must contend 
with a variety of random events, such as party members 
becoming sick, thieves stealing items, wagon parts breaking 
down, and so forth. 

Though the fictional worlds of land management in ancient 
Sumer and 19th century pioneer life along the Oregon Trail 
are quite distinct, and the two games would typically be 
classified as belonging to distinct game genres (the tycoon 
game and the simulation game respectively), there are 
strong similarities between them. Both games represent 
acquiring, using, and transforming resources such as food 
and money by representing the amount of each resource 
currently possessed by the player as a number, and defining 
sources that produce resources, sinks that consume 
resources, and transformers that convert one resource into 
another. Random events within the fictional world can 
consume or produce resources, or change rate constants for 
production, consumption, and transformation; the 
probability of a random event occurring is modulated by the 
amount of resources possessed and/or by the current rates of 
production, consumption, and transformation. Resource 
allocation involves the player selecting among different 
sources, sinks, or transformations to apply to different 
resources, selecting either absolute values or rates. These 
similarities constitute resource management logics. 
Collectively, these logics provide the fundamental abstract 
operations and effective interpretations for computational 
representations of resource acquisition and spending.  

Resource management logics, while not as ubiquitous in 
games as graphical logics, are still found at the heart of 
many videogames, including turn-based and real-time 
strategy games, tycoon games, city-management games and 
god games.  

Observations 
Given these two different families of operational logics as 
examples, we can now suggest some general properties that 
characterize operational logics: 

• Operational logics are more general, and more 
fundamental, than game rules or mechanics. Doom and 
Super Mario Brothers have very different rules, but 
both make heavy use of graphical logics. The graphical 
logics provide the more fundamental constraints and 
affordances on top of which rules are defined. 

• Operational logics provide strategies of computational 
representation. Graphical logics are concerned with 
representing movement, virtual touch, the effects of 
physics, and so forth. Resource management logics are 
concerned with representing finite resources, resource 
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production and consumption, resource tradeoffs, and so 
forth. As representations, operational logics operate for 
both authors and audiences, simultaneously providing 
representational tropes for authors and actionable 
representations for players. An algorithm or concrete 
implementation of an algorithm is not enough to be an 
operational logic, as the code on its own does not 
specify a representational strategy.  

• Operational logics are fundamentally computational. 
They provide specific strategies for procedural 
representation. Consider the example of representing 
moral decision making, as is found in games such as 
Star Wars: Knights of the Old Republic or Fable. 
Simply identifying the game design trope of “moral 
decision making”, or even, more specifically, “offer 
players choices between good and evil options,” is 
insufficient to have identified an operational logic. In 
order to, in this case, develop logics of moral decision 
making, the logics would have to provide strategies for 
mapping representations of moral choices and their 
effects into a computational representation; an example 
of such a logic is the moral alignment logic of 
representing moral status as a point in a one or more 
dimensional space, with different player actions 
moving the point around within the “morality space.”  

In the next section, we provide a more formal definition of 
operational logics that further unpacks these general 
properties.   

FORMALIZING OPERATIONAL LOGICS   
Since Wardrip-Fruin’s original description of operational 
logics [13], a number of authors have built on this concept, 
including both Wardrip-Fruin [14, 15] and Bogost [4]. 
While these authors usefully deploy operational logics in 
their analyses, they also provide examples of logics that 
muddy the concept and risk diluting its analytic power. In 
this section we examine a couple of problematic (and 
useful) examples of operational logics to motivate the need 
for a more formal treatment, then, extending the treatment 
presented in Wardrip-Fruin [14], provide a definition that 
sharpens its use as an analytic tool. 

Overly Broad Uses 
Bogost, after introducing the graphical and textual logic 
examples provided in Wardrip-Fruin’s dissertation [14] in 
the context of playable media, goes on to provide 
additional, general computing examples [4]:   

Outside of videogames, procedural tropes often 
take the form of common models of user 
interaction. Elements of a graphical user interface 
could be understood as procedural tropes, for 
example, the scrollbar or push-button. These 
elements facilitate a wide range of user interactions 
in a variety of content domains. Operational logics 
for opening and saving files are also reasonable 
candidates; these tropes encapsulate lower-level 

logics for getting handles to filestreams and 
reading or writing byte data. We might call the 
former group of procedural tropes interface logics, 
and the later input/output (I/O) logics.  

Here we see a couple of interesting moves being made. 
First, operational logic has slid into the more general term 
procedural trope, any commonly employed computational 
pattern. Second, the user interface examples provide a 
useful reminder that games are not the only computational 
media form in which an author expresses intent through 
providing operational interpretive affordances to an 
audience. Thus, we can expect operational logics to be 
useful wherever we find computational media.  

However, the file system examples become problematic. 
Yes, file systems are an abstraction, one that is provided by 
system programmers, for use by application programmers. 
But every computational system is a dizzying tower of 
abstractions, with processes defined at one level 
underwriting the abstraction defined at the next level. Yet 
abstraction is not a unitary phenomenon—it rather involves 
distinct phenomena such as functional abstraction and 
language abstraction. If operational logic is stretched to 
account for the ubiquitous and multi-faceted phenomenon 
of abstraction, it risks losing any analytic and explanatory 
power.  

Further, moving outside of computer science into the 
interdiscipline of software studies, the shift from 
operational logic to the more general category of 
“procedural trope” loses analytic power to account for 
specific processes of meaning making. One of the central 
questions of software studies is “How does computation 
mean?” There is no single answer to this question, but 
rather many different answers to how software means in 
different contexts, and thus many different types of 
“procedural tropes.” In order for operational logic to be a 
useful analytic category, it needs to describe a specific kind 
of “procedural trope,” a specific mechanism of meaning.  

Now consider the following passage from Wardrip-Fruin 
[14]. In this passage, he has just introduced the text-based 
interactive fiction (IF) of Infocom, and is describing the 
logics operating in these works.  

These textual games used a different operational 
vocabulary from video games, supported by 
different logics, including arguably-literary logics 
that operate at relatively abstract levels (which 
others have discussed in terms of the literary riddle 
(Montfort, 2003) and the performative quest 
(Aarseth, 2004)). These more abstract logics had to 
be supported by lower-level ones, including those 
for textual parsing and reply, world simulation, and 
progress tracking.  

Here a different problematic emerges in identifying 
operational logics in the reference to the literary riddle. 
Montfort argues that the pleasures of the puzzle-like 
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situations presented to players of IF can be understood in 
reference to the figure of the literary riddle [8]. That is, the 
same kinds of conceptual shifts required of readers to solve 
a literary riddle (or understand a presented solution) are 
required of players of IF. In this quote, the riddle-like 
operation of IF is identified as an abstract operational logic. 
But in what sense is there computational support for this 
riddle-like nature?  

Within interactive fiction there are operational logics 
supporting navigation, object manipulation, and other 
aspects of a simulated world. Whether a particular piece of 
interactive fiction requires the player to make the 
conceptual shifts associated with the riddle, however, is 
“merely” an issue of authorial skill in deploying the 
operational logics in combination with good writing. If all 
developed authoring approaches for computational media 
fall under the sign of operational logic, then the concept 
devolves, losing explanatory power. Putting it crudely, if 
the filesystem abstractions fail at being operational logics 
because they are code without meaning (they are decoupled 
from author and audience), the IF riddle fails at being an 
operational logic because it is meaning without code.  

An Expanded Definition 
We are now ready to state a more formal definition of 
operational logic that captures the intuitive properties of 
logics described in the previous section, and can make 
principled distinctions to avoid the problems described 
above:  

An operational logic defines an authoring 
(representational) strategy, supported by abstract 
processes or lower-level logics, for specifying the 
behaviors a system must exhibit in order to be 
understood as representing a specified domain to a 
specified audience.   

We unpack the elements of this definition below, starting 
with abstract process. An abstract process is a specification 
for how a process operates. An abstract process for 
determining whether two visual representations (collections 
of pixels) overlap is to declare an overlap has occurred if 
any of the pixels of the two objects occupy the same 
location. An abstract process for randomly adding or 
subtracting an amount from a numeric value is to define a 
set of positive and negative numbers and non-
deterministically select one of these numbers to add to the 
value (we will make use of this abstract process in a 
discussion of the random event resource management logic 
below). Almost any abstract process could be carried out 
through (“implemented in”) human effort as well as 
automatic computation, but for many contemporary works 
of digital media the calculations would be intractable to 
manually carry out. Abstract processes describe sets of 
algorithms whose behavior meets the abstract specification.  

Implemented processes are concrete realizations of abstract 
processes. Some implementations are through human effort, 

others through automatic computation. implementations 
make different tradeoffs in the amount of memory and 
processing time they require, which can determine whether 
work of a particular sort is possible with the available 
resources (e.g., certain approaches for representing 
statistical models balloon much more quickly than others) 
and fast enough to be responsive (e.g., fast 3D rendering 
enables fluid interactive navigation of virtual space). 
Implementation specifics may also alter the results of 
processes in ways that can appear profoundly different on 
the surface (e.g., using a piece of data as a model of its own 
statistics may meet the abstract definition of a statistical 
technique while producing very different results from an 
external model). An implemented process is a specific 
algorithm that meets the specifications of an abstract 
process.  

An operational logic is not just a naked process, but 
provides a strategy for mapping a desired representational 
effect onto the process; that is, it defines a unit of authorial 
and interpretive affordance [6]. Interpretive affordances 
support the interpretations an audience makes about the 
operations of a computational system, conditioning the 
meanings negotiated between author and audience. 
Interpretive affordances provide resources both for creating 
a mental model of the operation of the system, and 
additionally, in the case of an interactive systems, for 
supporting intentions for action. The authorial affordances 
of a computational system are the “hooks” that the system 
architecture (processes and data) provides for an author to 
inscribe their authorial intention in the machine. Different 
architectures provide different relationships between 
authorial control and the combinatorial possibilities of 
computation. Operational logics are the units that provide 
effective authorial affordances for specific representational 
tasks. To define an effective authorial affordance, we first 
need to understand the double meanings that all 
computational systems participate in.  

Every computational system can be read as a static text and 
executed as a process. As a static text, a computational 
system is a description of an implemented process. The 
process may be described using code in a particular 
programming language, a particular configuration of 
hardware elements, or precise natural language description. 
The execution of a process description is purely 
mechanical, that is, it requires no processes of human 
meaning making. As a pre-interpreted machine, an 
executing process consists entirely of complex causal flows 
mediating changes in abstract state.  

The executing process gains a layer of human meaning 
through interpretations of outputs and of the relationship 
between inputs and outputs. The static, textual description 
of the process simultaneously specifies an uninterpreted, 
meaningless machine (the executing process), and 
represents properties of the (desired) human interpretations 
of potential executions. This raises a conundrum: how can 
process descriptions be simultaneously amenable to the 
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uninterpreted manipulations of computational systems 
(execution) and to serving as signs for human subjects? The 
answer is that the literal process description (the “code 
machine”) must be coupled with a collection of rhetorical 
strategies for talking about the static process description 
and its executions (the “rhetorical machine”). For example, 
the rhetorical machine associated with the process 
description of a planner supports the use of language such 
as “goal,” “plan,” and “knowledge” to simultaneously refer 
to specific formal entities within the process, and to make 
use of the systems of meaning these words have when 
applied to human beings. In fact, these rhetorical structures 
are also important to the initial construction of the planner 
itself, by its author(s). 

Now we can define an effective authorial affordance: a 
computational media system exhibits effective authorial 
affordances for a specific representational task when the 
internal structures and processes made available by the 
system are coupled with rhetorical strategies such that the 
author is able to represent desired interpretive affordances 
in the static process description, and, when executed, the 
process does indeed provide the desired interpretive 
affordances for the audience. An operational logic is 
precisely such a packaging of a rhetorical strategy—“an 
authoring (representational) strategy”—with a process— 
“supported by abstract processes or lower-level logics”—in 
order to provide an effective authorial affordance—
supporting the specification of “the behaviors a system 
must exhibit in order to be understood as representing a 
specified domain to a specified audience.”   

Examples Revisited 
Now we will look again at a couple of our previous 
examples of operational logics in light of this more formal 
definition. Consider the movement graphical logic.  

• The abstract process is “continuously redraw 
collections of pixels, erasing the previous drawing 
between each redraw, while applying a small, 
identical offset to the screen location at which each 
pixel is drawn.”  

• The domain is the representation on the screen of 
the movement of physical objects.  

• The representational strategy is “in order to 
represent on the screen a physical object moving 
along a trajectory, make the collection of pixels be 
an image of the object, specify a sequence of 
offsets along the desired trajectory, using larger 
offsets to represent faster movement.”  

• The specified audience is an audience that is 
primed to interpret the continuous redrawing of an 
image as the movement of an object. While this 
interpretation can be scaffolded, like any 
representational system it is ultimately 
conventional.  

Fortunately for the designers of videogames, this 
representation is a so broadly understood convention that 
the specified audience is in some sense “everybody” (one 
can make the argument that this representational convention 
is supported by features of the human vision system). But 
operational logics can partake of interpretive conventions 
that are understood by narrow audiences. Consider the 
random event resource management logic.  

• The abstract process is “given a collection of one 
or more labeled numeric values, define a set of 
positive and negative numbers each associated 
with a label and a sensory representation that will 
make use of other operational logics, define a 
probability distribution over these numbers, and 
non-deterministically select a number according to 
the distribution, displaying its associated 
representation and adding it to the number 
associated with its label.”  

• The domain is the representation of random events 
within a fictional world that impact the amount of 
managed resources.  

• The representational strategy says “in order to 
represent randomly occurring fictional events 
impacting managed resources, associate each 
resource with a numeric value, associate ‘good’ 
fictional events with positive numbers, ‘bad’ 
fictional events with negative numbers, create a 
sensory representation of the fictional event, and 
define a probability of the event occurring, 
generally associating smaller probabilities with 
larger positive and negative resource changes.”  

• On the audience interpretive side, this 
representation is entirely conventional for players 
of simulation games (and thus most videogame 
players). 

It is possible to now clearly see how both the file system 
and riddle examples introduced at the beginning of this 
section fail to qualify as operational logics. For the file 
system operations, while they provide abstractions useable 
by programmers, abstractions that in fact might be used as 
part of a process description, they do not participate in the 
computational media ecosystem of authorial intention 
mediated through a computational representation to an 
audience. While one can talk about meaning in the context 
of file systems, it is not this kind of meaning making. On 
the other hand, while the trope of the riddle is certainly a 
representation an author can intend, there is no abstract 
process nor representational strategy supporting the riddle. 
When the trope of the riddle successfully operates in an IF, 
it is because the author has made idiomatic use of many 
logics that are conventional in IF, but these idioms are not 
yet codified to the point of providing effective authorial 
affordances.   
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In the two examples above, pulling apart the abstract 
process from the representational strategy resulted in 
awkward, and perhaps overly abstruse-sounding, 
descriptions of the processes and strategies. This is 
precisely because an operational logic actually binds 
process and strategy into a unified whole; the strategy 
provides the language for talking about the process. When 
you pull the two halves apart, it reveals the hidden, inner 
complexity of the union. Especially for logics that are as 
deeply conventional in computational media production as 
graphical and resource management logics, it can feel as if 
the process is intrinsically about the representational 
domain. Thus “move objects by continuously redrawing 
them” and “random events add and subtract from managed 
resources” can feel like unproblematic descriptions of 
processes. But processes, on their own, have no intrinsic 
representational power (and can thus be quite difficult to 
talk about in the abstract). A representational strategy 
functions precisely because it provides a way of talking and 
thinking about a process. But the original establishment of 
this mapping between process and rhetoric takes work. 
Fundamental innovation in computational media involves 
doing the work of establishing new strategies for mapping 
representational effects onto (potentially new) processes.    

DISCUSSION 
In this paper we have gone to some length to give examples 
of operational logics (and examples that aren’t logics), 
define the term, and expand on the definition. We do this 
not from a love of terminology, but because we believe that 
a relatively precise notion of operational logics makes it 
possible to discuss important issues with connections 
“under the hood” of games. In particular, we believe 
operational logics provide one of the most potentially 
fruitful ways to bring game studies together with software 
studies. We sketch a few directions for possible work of this 
sort here. 

Operational logics provide a useful analytical tool for 
understanding constraints on game mechanics and game 
rules, two of the central topics of game studies. (While 
these topics are not always clearly distinguished, Sicart [12] 
and others define mechanics in relation to player/agent 
actions, while rules are more general.) Discussion in game 
design and game scholarship often identifies mechanics and 
rules as central sites for innovation. But the space of 
possible innovation is not free—it is fundamentally 
constrained by the operational logics available. This is 
because operational logics deeply underwrite mechanics 
and rules.  

Given this, considering operational logics can clarify what 
differentiates certain types of alternative game creation. 
Wardrip-Fruin et al's Regime Change (2004) is driven by 
the serial-ordering logic of Markov chains, which he argues 
is an appropriate logic for textual play. Mateas and Andrew 
Stern's Façade (2005) required the development of new 
interpersonal logics that could support structures such as its 

“affinity game.” Arguably, the definition and development 
of new types of logics presents an important alternative to 
creating games, commercially or otherwise, that primarily 
depend on longstanding spatial and resource management 
logics. In undertaking such expansions, some necessary 
logics may already have formalized abstract and 
implemented processes (further work in textual logics may 
draw on computational linguistics) while others may require 
novel computational models (e.g., to broaden interpersonal 
logics to include friendship or humor).  

This is not to say that interesting innovation can’t involve 
working within established logics. It is certainly possible to 
define interesting new kinds of mechanics and rules on top 
of existing logics. In fact, such work can arguably lead to 
the production of new logics. Consider Passage (2007) by 
Jason Roherer. In this game graphical logics are used as the 
basis of spatial mechanics associated with metaphors about 
life. For example, collision detection is used to determine 
whether the character’s journey will take place with a 
partner or alone. This isn’t just part of the fictional world—
solo characters can explore parts of the world that couples 
can’t. As time passes, the player character inevitably grows 
old and dies. Nick Montfort argues that in Passage 
choosing to do things like explore the world, perhaps 
searching for hidden treasure, become as much about how 
one lives one’s life as about spatial exploration and game 
accomplishment [9]. One can imagine such currently-
unusual uses of graphical logics eventually becoming well-
understood, to the point that the underlying abstract 
processes become recognized as participating in two kinds 
of operational logics: both the current graphical/spatial 
logics and another in which the shifting position of 
elements on the screen is actually understood as the making 
of non-spatial life decisions. This seems unlikely in the 
specific case of Passage, but it explains part of what seems 
unusual and full of potential about the work. 

On a different note, there is a non-obvious issue with the 
fact that operational logics are defined in terms of abstract 
rather than implemented processes. It raises the specter that 
bogus operational logics can be defined which are not 
actually underwritten by implementable computational 
processes. However, in order to qualify as an abstract 
process, there must be an implemented process that meets 
the specification of the abstract process. We are not allowed 
to cheat by defining an operational logic around “magic” 
abstract processes such as “generate the same kinds of 
emotional responses to interpersonal interactions that 
people do.” Unless an operational logic has actually been 
demonstrated to operate by creating a computational media 
artifact that achieves the claimed representational effect 
using the claimed process and a strategy, then it doesn’t 
exist. Once demonstrated, operational logics support a level 
of analysis that is safely computational (no cheating), 
without having to drop to the level of the code in which the 
processes are implemented. This differentiates the approach 
from one such as Mark Marino's “Critical Code Studies” 
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[5], eliminating the need to acquire (rarely available) source 
code access. On the other hand, operational logics are more 
specific to computational systems than concepts such as 
Bogost’s of the “unit operation,” which creates a foundation 
for “any medium—poetic, literary, cinematic, 
computational” to be “read as a configurative system, an 
arrangement of discrete, interlocking units of expressive 
meaning” [3]. Instead, operational logics are an 
implementation-independent way of talking about system 
architectures and their fundamental actions.  

Finally, operational logics are also a tool for comparing and 
examining individual works. For example, while at the level 
of interface actions the mechanics of Façade may seem 
similar to those of Joseph Weizenbaum's (1966) 
Eliza/Doctor—each supports conversational interaction, 
with the player allowed arbitrary textual input—an 
examination of the underlying logics reveals a stark 
contrast. Eliza/Doctor's conversational logic is one of 
transformation, turning each audience statement into its 
own reply (though designed to avoid immediate detection). 
Façade, on the other hand, interprets audience text as 
discourse acts within the game's social space. Further, 
looking at the relationships between operational logics 
within a system can reveal where interpretive energy is best 
spent (and help avoid error). For example, while Janet 
Murray (1997) and Espen Aarseth (1997) both understand 
the interaction mechanics of the Tale-Spin system, their 
interpretations ignore the fact that planbox-based character 
simulation is its central operational logic, leading both to 
missed opportunities and inaccuracies.3  

In short, operational logics can help us see the structure of 
games and the field more deeply and broadly, imagine the 
future in constructive new ways, and interpret individual 
works more accurately. By employing an analytic unit that 
cuts across multiple levels of analysis to describe the 
relationship between implementation and representation, we 
can begin to map the space of possibility for procedural 
representation that underlies games and all computational 
media work.   

                                                           
3  In particular, Murray critiques Tale-Spin for plot 
structures that are too abstract (in fact, it contains no plot 
structures) and devotes the next chapter to simulated 
characters (but makes no mention of Tale-Spin’s interesting 
planning logic for character behavior) [11]. Aarseth, on the 
other hand, uses Tale-Spin as an example in an argument 
that machines should not be forced to simulate human 
narrators, when the absence of simulated narration is a 
primary critique of Tale-Spin from those who engage its 
operations. Aarseth’s missed opportunity is to consider 
Tale-Spin as a step toward the new genres for which he is 
calling [1]. 
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