
Breaking New Ground: Innovation in Games, Play, Practice and Theory. Proceedings of DiGRA 2009

© 2009 Authors & Digital Games Research Association (DiGRA). Personal and educational classroom use of this paper is allowed,
commercial use requires specific permission from the author.

Defining Operational Logics
Michael Mateas and Noah Wardrip-Fruin

michaelm, nwf @soe.ucsc.edu

ABSTRACT
Much analysis of games focuses, understandably, on their
mechanics and the resulting audience experiences.
Similarly, many genres of games are understood at the level
of mechanics. But there is also the persistent sense that a
deeper level of analysis would be useful, and a number of
proposals have been made that attempt to look toward a
level that undergirds mechanics. This paper focuses on a
particular approach of this sort—operational logics—first
proposed by Noah Wardrip-Fruin (2005) and since then
discussed by authors such as Michael Mateas (2006) and
Ian Bogost (2007). Operational logics connect fundamental
abstract operations, which determine the state evolution of a
system, with how they are understood at a human level. In
this paper we expand on the concept of operational logics,
offering a more detailed and rigorous discussion than
provided in earlier accounts, setting the stage for more
effective future use of logics as an analytical tool. In
particular, we clarify that an operational logic defines an
authoring (representational) strategy, supported by abstract
processes or lower-level logics, for specifying the behaviors
a system must exhibit in order to be understood as
representing a specified domain to a specified audience. We
provide detailed discussion of graphical and resource
management logics, as well as explaining problems with
certain earlier expansions of the term (e.g., to file handling
and interactive fiction’s riddles).

Author Keywords
operational logics, mechanics, code studies, unit operations,
software studies

INTRODUCTION
Games can be studied at many levels of abstraction, and in
relationship to many social, cultural, psychological, media-
theoretic, and formal phenomena. This multivalent nature of
games contributes to the methodological pluralism seen in
the game studies community. Montfort and Bogost
introduce a five level model for the analysis of digital
artifacts as a framework for organizing this plurality of
methods and viewpoints [10]. The levels range from
reception/operation through interface, form/function, code

and finally platform. In the context of games, the first three
levels are the traditional purview of game studies, with a
focus, respectively, on the reception of the artifact in the
social and cultural field; the game interface and the visual
and auditory representational strategies; and the mechanics,
rules, formal, and simulational elements of games. The last
two levels, code and platform, have been far less studied,
with the code level focusing on deep readings of software
structures, and platform studies focusing on deep readings
of the hardware and system abstractions that underlie
software. In this paper we present operational logics as a
unit of analysis centered at the code and platform levels, but
that connects technical implementation strategies with
authorial and audience meanings. Operational logics are the
fundamental abstract operations—with effective
interpretations available to both authors and players—that
determine the state evolution of the system and underwrite
the gameplay. As such they provide “deep cores” that bind
together issues ranging from the platform to reception level
for specific representational domains.

Wardrip-Fruin introduced the notion of operational logics
(though did not name them as such until his 2006
dissertation [14]) in a 2005 paper exploring the different
ways in which interactive texts can be made playable [13].
To briefly recapitulate the argument of that paper, Wardrip-
Fruin argues that, rather than focusing on the question of
which interactive experiences are or are not games, it is
more fruitful to focus on the analytic category of the
playable, and to ask of various interactive experiences “in
what way is this experience playable?” He then introduces
the notion of operational logics as a way of analyzing how a
given interactive experience structures the space of play,
particularly focusing on two families of operational logics:
graphical logics and textual logics. Wardrip-Fruin further
developed the idea of operational logics in his dissertation
[14] and in Expressive Processing [15], though not
providing a wholly consistent account across these three
treatments. Other authors, such as Mateas [7] and Bogost
[4], have further expanded on the notion of operational
logics, but generally as a niche discussion in the context of
a larger project; even Wardrip-Fruin, in his three different

Expressive Intelligence Studio
Department of Computer Science

University of California, Santa Cruz
1156 High St, MS:SOE3

Santa Cruz, CA 95064 USA

 2

accounts, always introduces operational logics in the
context of making a larger argument. In this paper we seek
to define operational logics as a first-class unit of analysis,
offering a more detailed and rigorous discussion than
provided in earlier accounts. We discuss graphical and
resource management logics in some detail, outline a
number of limit cases for the concept of operational logics,
and then provide and expand a full definition of the
concept. Finally, we discuss how this work sets the stage
for the use of operational logics in connecting a number of
issues in game studies to the emerging area of software
studies, offering a powerful combination of technical
grounding with authorial and audience concerns.

OPERATIONAL LOGICS
In this section we introduce operational logics with an
informal discussion of graphical and resource management
logics. The next section provides a more formal definition
of operational logics.

Graphical Logics
To introduce graphical logics, consider two early
videogames, Spacewar! (1962) and Pong (1972). In
Spacewar!, two players control the flight of virtual
spacecraft. Player controls are clockwise and
counterclockwise rotation, thrust, fire and hyperspace
(which jumps the ship to a random location on screen).
Each player tries to shoot the other while avoiding being hit
by enemy fire or crashing into the enemy ship, while
navigating within the gravitational field of a star in the
center of the screen. A ship is destroyed when it collides
with a bullet, the other ship, or the star in the center.

In Pong, a simple table tennis simulator, two players control
paddles that are able to move vertically along the goal lines
at the left and right edges of the screen. A simple computer
controlled opponent can be substituted for one of the
players. The players volley a ball back and forth; when
either player misses (the ball fails to collide with the
paddle), the other player scores. The angle at which the ball
reflects from the paddle on collision depends on where the
ball hits the paddle, reflecting at sharper angles towards the
ends of the paddle.

Though the fictional worlds of space warfare and table
tennis are quite distinct from each other, and the two games
would typically be classified as belonging to distinct game
genres (the shoot-em-up and sports simulation
respectively), there are strong similarities between them.
Both games represent the movement of simulated objects
(space ships, projectiles, balls, paddles) by constantly
erasing and redrawing collections of pixels (or, in the
original Spacewar!, collections of vectors) on the screen.
Major gameplay events occur when two virtual objects
collide, naively, when pixels/vectors belonging to one
virtual object are drawn at the same screen location as
pixels/vectors belonging to another virtual object. The
simulated movement of objects is influenced by an
underlying physics simulation, giving spaceships inertia and

making them subject to gravity, or changing the angle of a
ball’s trajectory as a function of where it hits the paddle (the
physics simulation does not have to obey the physics of our
world). These similarities constitute operational logics,
which we, as discussed above, define as fundamental
abstract operations—with effective interpretations available
to both authors and players—that determine the state
evolution of the system and underwrite the gameplay. Both
Spacewar! and Pong exhibit canonical graphical logics,
specifically logics of movement, collision detection and
physics. There’s an additional logic operating in Spacewar!:
navigation. Navigation involves player-controlled
(simulated) movement of a (virtual) object in a represented
space, in this case the movement of space ships in a two-
dimensional field. Pong can be said to make use of
navigation logic, though it is the degenerate case of
navigation along a line segment.

Graphical logics, which underwrite the simulation of spaces
and objects within spaces, are the most common logics
employed in videogames, found at the heart of everything
from the playful Mario games to the gritty Grand Theft
Auto franchise. Consider the logic of collision detection.
Collision detection is operating when Pac-Man eats a dot or
power pill, or is touched by a ghost; it’s operating when the
player is unable to move through walls in Doom, picks up
health packs, hits demons with weapons, and is hit by
demon attacks; it’s operating when the player’s katamari
picks up or bounces off an object in Katamari Damacy.
Similar examples can be enumerated for movement,
navigation, and physics, across the vast majority of
contemporary and historical games.

Resource Management Logics
Before discussing some general properties of operational
logics, we will examine one more family of logics in this
section. Consider two other early computer-based games,
Hamurabi and Oregon Trail. Richard Merrill wrote a land
management game called The Sumer Game in 1969 in
FOCAL for the PDP-8. David Ahl ported it to BASIC for
the PDP-8, and later published an expanded version of the
program, renamed Hamurabi, in his best-selling book
BASIC Computer Games [2]. It is in this version that the
game became well-known among personal computer
hobbyists, who would type in the program to play the game
(and, because the game was distributed as source code,
often tinker with the program to explore variants). In
Hamurabi the player takes the role of “Hamurabi,” the
ancient king of “Sumeria.”1

In this turn-based, text-based game, the player makes a
series of decisions about land management and the

1 Hamurabi is presumably a shortening of Hammurabi to fit
in an eight-character file name limit. The game invites
players to “Try your hand at governing ancient Sumeria”
(rather than Sumer).

 3

allocation of grain. During each of 10 rounds, each
representing one year, the player decides how many acres
of land to buy or sell, how many bushels of grain to feed the
people (20 per person required to avoid starving anyone),
and how many acres of land to plant (one bushel of grain
plants 2 acres)2. At each step, the game state consists of the
population, the number of acres owned, the number of
bushels of grain owned, and the current price of land in
bushels per acre.

As one would expect, feedback loops and tradeoffs exist
between the various player choices. For example, you can
only plant as many acres as ten times your population (each
person can farm 10 acres), and your population grows as
function of the number of acres owned and the amount of
stored grain—though more acres and grain are required to
grow the population by the same absolute value as the
population gets bigger. Further, random events can strike,
such as plagues that eliminate half your population and rats
eating your stored grain. This introduces further tradeoffs
into the system. For example, the amount of stored grain
destroyed if a rat infestation strikes increases with the
amount of total grain stored. This encourages the player to
minimize the amount of stored grain in order to minimize
exposure to this risk, yet the player must also maximize the
amount of stored grain in order to grow their population.
Finally, there is random fluctuation in the yield per acre
(number of bushels produced per acre planted) as well as in
the price per acre, introducing an element of uncertainty
and encouraging the player to try strategies such as buying
land low and selling high, which can become necessary in
low-yield years in order to avoid mass starvation.

In Oregon Trail the player guides a wagon that is traversing
the Oregon Trail from Independence Missouri to Oregon’s
Willamette Valley in 1848. The player’s goal is to reach the
end of the trail while minimizing the number of party
members lost along the way. Oregon Trail was developed
by Don Rawitsch, Bill Heinemann and Paul Dillenberger to
teach school children about the realities of pioneer life
along the Oregon Trail in the mid 19th century. The game
exists in several versions, with the original mainframe
versions developed in 1971 and released in 1974, and the
Apple II versions that most players are familiar with first
released in 1980 with an updated version in 1985.

At the beginning of the game, players are given a budget for
equipping their wagon. Purchase decisions include sets of
clothes (influences health as a function of weather), wagon
spare parts (wagons break down), food, bullets (can be used
to hunt as another way of getting food), and so on. Once the
trip is underway, the player is able to adjust the pace at
which the wagon moves, rate of consumption of food,
whether to trade (during trading, the player is offered swaps
for items in her inventory), the opportunity to hunt (use

2 The simulation constants reported here are based on David
Ahl’s 1973 BASIC version for the PDP.

bullets to try to hit game to supplement food), the
opportunity to rest (costs days, and therefore food, but can
improve the health of party members and rest oxen) and, at
the occasional fort, opportunities to purchase items. The
player must manage tradeoffs between the health of the
party members, consumption of food, and number of miles
traversed per day. Additionally, the player must contend
with a variety of random events, such as party members
becoming sick, thieves stealing items, wagon parts breaking
down, and so forth.

Though the fictional worlds of land management in ancient
Sumer and 19th century pioneer life along the Oregon Trail
are quite distinct, and the two games would typically be
classified as belonging to distinct game genres (the tycoon
game and the simulation game respectively), there are
strong similarities between them. Both games represent
acquiring, using, and transforming resources such as food
and money by representing the amount of each resource
currently possessed by the player as a number, and defining
sources that produce resources, sinks that consume
resources, and transformers that convert one resource into
another. Random events within the fictional world can
consume or produce resources, or change rate constants for
production, consumption, and transformation; the
probability of a random event occurring is modulated by the
amount of resources possessed and/or by the current rates of
production, consumption, and transformation. Resource
allocation involves the player selecting among different
sources, sinks, or transformations to apply to different
resources, selecting either absolute values or rates. These
similarities constitute resource management logics.
Collectively, these logics provide the fundamental abstract
operations and effective interpretations for computational
representations of resource acquisition and spending.

Resource management logics, while not as ubiquitous in
games as graphical logics, are still found at the heart of
many videogames, including turn-based and real-time
strategy games, tycoon games, city-management games and
god games.

Observations
Given these two different families of operational logics as
examples, we can now suggest some general properties that
characterize operational logics:

• Operational logics are more general, and more
fundamental, than game rules or mechanics. Doom and
Super Mario Brothers have very different rules, but
both make heavy use of graphical logics. The graphical
logics provide the more fundamental constraints and
affordances on top of which rules are defined.

• Operational logics provide strategies of computational
representation. Graphical logics are concerned with
representing movement, virtual touch, the effects of
physics, and so forth. Resource management logics are
concerned with representing finite resources, resource

 4

production and consumption, resource tradeoffs, and so
forth. As representations, operational logics operate for
both authors and audiences, simultaneously providing
representational tropes for authors and actionable
representations for players. An algorithm or concrete
implementation of an algorithm is not enough to be an
operational logic, as the code on its own does not
specify a representational strategy.

• Operational logics are fundamentally computational.
They provide specific strategies for procedural
representation. Consider the example of representing
moral decision making, as is found in games such as
Star Wars: Knights of the Old Republic or Fable.
Simply identifying the game design trope of “moral
decision making”, or even, more specifically, “offer
players choices between good and evil options,” is
insufficient to have identified an operational logic. In
order to, in this case, develop logics of moral decision
making, the logics would have to provide strategies for
mapping representations of moral choices and their
effects into a computational representation; an example
of such a logic is the moral alignment logic of
representing moral status as a point in a one or more
dimensional space, with different player actions
moving the point around within the “morality space.”

In the next section, we provide a more formal definition of
operational logics that further unpacks these general
properties.

FORMALIZING OPERATIONAL LOGICS
Since Wardrip-Fruin’s original description of operational
logics [13], a number of authors have built on this concept,
including both Wardrip-Fruin [14, 15] and Bogost [4].
While these authors usefully deploy operational logics in
their analyses, they also provide examples of logics that
muddy the concept and risk diluting its analytic power. In
this section we examine a couple of problematic (and
useful) examples of operational logics to motivate the need
for a more formal treatment, then, extending the treatment
presented in Wardrip-Fruin [14], provide a definition that
sharpens its use as an analytic tool.

Overly Broad Uses
Bogost, after introducing the graphical and textual logic
examples provided in Wardrip-Fruin’s dissertation [14] in
the context of playable media, goes on to provide
additional, general computing examples [4]:

Outside of videogames, procedural tropes often
take the form of common models of user
interaction. Elements of a graphical user interface
could be understood as procedural tropes, for
example, the scrollbar or push-button. These
elements facilitate a wide range of user interactions
in a variety of content domains. Operational logics
for opening and saving files are also reasonable
candidates; these tropes encapsulate lower-level

logics for getting handles to filestreams and
reading or writing byte data. We might call the
former group of procedural tropes interface logics,
and the later input/output (I/O) logics.

Here we see a couple of interesting moves being made.
First, operational logic has slid into the more general term
procedural trope, any commonly employed computational
pattern. Second, the user interface examples provide a
useful reminder that games are not the only computational
media form in which an author expresses intent through
providing operational interpretive affordances to an
audience. Thus, we can expect operational logics to be
useful wherever we find computational media.

However, the file system examples become problematic.
Yes, file systems are an abstraction, one that is provided by
system programmers, for use by application programmers.
But every computational system is a dizzying tower of
abstractions, with processes defined at one level
underwriting the abstraction defined at the next level. Yet
abstraction is not a unitary phenomenon—it rather involves
distinct phenomena such as functional abstraction and
language abstraction. If operational logic is stretched to
account for the ubiquitous and multi-faceted phenomenon
of abstraction, it risks losing any analytic and explanatory
power.

Further, moving outside of computer science into the
interdiscipline of software studies, the shift from
operational logic to the more general category of
“procedural trope” loses analytic power to account for
specific processes of meaning making. One of the central
questions of software studies is “How does computation
mean?” There is no single answer to this question, but
rather many different answers to how software means in
different contexts, and thus many different types of
“procedural tropes.” In order for operational logic to be a
useful analytic category, it needs to describe a specific kind
of “procedural trope,” a specific mechanism of meaning.

Now consider the following passage from Wardrip-Fruin
[14]. In this passage, he has just introduced the text-based
interactive fiction (IF) of Infocom, and is describing the
logics operating in these works.

These textual games used a different operational
vocabulary from video games, supported by
different logics, including arguably-literary logics
that operate at relatively abstract levels (which
others have discussed in terms of the literary riddle
(Montfort, 2003) and the performative quest
(Aarseth, 2004)). These more abstract logics had to
be supported by lower-level ones, including those
for textual parsing and reply, world simulation, and
progress tracking.

Here a different problematic emerges in identifying
operational logics in the reference to the literary riddle.
Montfort argues that the pleasures of the puzzle-like

 5

situations presented to players of IF can be understood in
reference to the figure of the literary riddle [8]. That is, the
same kinds of conceptual shifts required of readers to solve
a literary riddle (or understand a presented solution) are
required of players of IF. In this quote, the riddle-like
operation of IF is identified as an abstract operational logic.
But in what sense is there computational support for this
riddle-like nature?

Within interactive fiction there are operational logics
supporting navigation, object manipulation, and other
aspects of a simulated world. Whether a particular piece of
interactive fiction requires the player to make the
conceptual shifts associated with the riddle, however, is
“merely” an issue of authorial skill in deploying the
operational logics in combination with good writing. If all
developed authoring approaches for computational media
fall under the sign of operational logic, then the concept
devolves, losing explanatory power. Putting it crudely, if
the filesystem abstractions fail at being operational logics
because they are code without meaning (they are decoupled
from author and audience), the IF riddle fails at being an
operational logic because it is meaning without code.

An Expanded Definition
We are now ready to state a more formal definition of
operational logic that captures the intuitive properties of
logics described in the previous section, and can make
principled distinctions to avoid the problems described
above:

An operational logic defines an authoring
(representational) strategy, supported by abstract
processes or lower-level logics, for specifying the
behaviors a system must exhibit in order to be
understood as representing a specified domain to a
specified audience.

We unpack the elements of this definition below, starting
with abstract process. An abstract process is a specification
for how a process operates. An abstract process for
determining whether two visual representations (collections
of pixels) overlap is to declare an overlap has occurred if
any of the pixels of the two objects occupy the same
location. An abstract process for randomly adding or
subtracting an amount from a numeric value is to define a
set of positive and negative numbers and non-
deterministically select one of these numbers to add to the
value (we will make use of this abstract process in a
discussion of the random event resource management logic
below). Almost any abstract process could be carried out
through (“implemented in”) human effort as well as
automatic computation, but for many contemporary works
of digital media the calculations would be intractable to
manually carry out. Abstract processes describe sets of
algorithms whose behavior meets the abstract specification.

Implemented processes are concrete realizations of abstract
processes. Some implementations are through human effort,

others through automatic computation. implementations
make different tradeoffs in the amount of memory and
processing time they require, which can determine whether
work of a particular sort is possible with the available
resources (e.g., certain approaches for representing
statistical models balloon much more quickly than others)
and fast enough to be responsive (e.g., fast 3D rendering
enables fluid interactive navigation of virtual space).
Implementation specifics may also alter the results of
processes in ways that can appear profoundly different on
the surface (e.g., using a piece of data as a model of its own
statistics may meet the abstract definition of a statistical
technique while producing very different results from an
external model). An implemented process is a specific
algorithm that meets the specifications of an abstract
process.

An operational logic is not just a naked process, but
provides a strategy for mapping a desired representational
effect onto the process; that is, it defines a unit of authorial
and interpretive affordance [6]. Interpretive affordances
support the interpretations an audience makes about the
operations of a computational system, conditioning the
meanings negotiated between author and audience.
Interpretive affordances provide resources both for creating
a mental model of the operation of the system, and
additionally, in the case of an interactive systems, for
supporting intentions for action. The authorial affordances
of a computational system are the “hooks” that the system
architecture (processes and data) provides for an author to
inscribe their authorial intention in the machine. Different
architectures provide different relationships between
authorial control and the combinatorial possibilities of
computation. Operational logics are the units that provide
effective authorial affordances for specific representational
tasks. To define an effective authorial affordance, we first
need to understand the double meanings that all
computational systems participate in.

Every computational system can be read as a static text and
executed as a process. As a static text, a computational
system is a description of an implemented process. The
process may be described using code in a particular
programming language, a particular configuration of
hardware elements, or precise natural language description.
The execution of a process description is purely
mechanical, that is, it requires no processes of human
meaning making. As a pre-interpreted machine, an
executing process consists entirely of complex causal flows
mediating changes in abstract state.

The executing process gains a layer of human meaning
through interpretations of outputs and of the relationship
between inputs and outputs. The static, textual description
of the process simultaneously specifies an uninterpreted,
meaningless machine (the executing process), and
represents properties of the (desired) human interpretations
of potential executions. This raises a conundrum: how can
process descriptions be simultaneously amenable to the

 6

uninterpreted manipulations of computational systems
(execution) and to serving as signs for human subjects? The
answer is that the literal process description (the “code
machine”) must be coupled with a collection of rhetorical
strategies for talking about the static process description
and its executions (the “rhetorical machine”). For example,
the rhetorical machine associated with the process
description of a planner supports the use of language such
as “goal,” “plan,” and “knowledge” to simultaneously refer
to specific formal entities within the process, and to make
use of the systems of meaning these words have when
applied to human beings. In fact, these rhetorical structures
are also important to the initial construction of the planner
itself, by its author(s).

Now we can define an effective authorial affordance: a
computational media system exhibits effective authorial
affordances for a specific representational task when the
internal structures and processes made available by the
system are coupled with rhetorical strategies such that the
author is able to represent desired interpretive affordances
in the static process description, and, when executed, the
process does indeed provide the desired interpretive
affordances for the audience. An operational logic is
precisely such a packaging of a rhetorical strategy—“an
authoring (representational) strategy”—with a process—
“supported by abstract processes or lower-level logics”—in
order to provide an effective authorial affordance—
supporting the specification of “the behaviors a system
must exhibit in order to be understood as representing a
specified domain to a specified audience.”

Examples Revisited
Now we will look again at a couple of our previous
examples of operational logics in light of this more formal
definition. Consider the movement graphical logic.

• The abstract process is “continuously redraw
collections of pixels, erasing the previous drawing
between each redraw, while applying a small,
identical offset to the screen location at which each
pixel is drawn.”

• The domain is the representation on the screen of
the movement of physical objects.

• The representational strategy is “in order to
represent on the screen a physical object moving
along a trajectory, make the collection of pixels be
an image of the object, specify a sequence of
offsets along the desired trajectory, using larger
offsets to represent faster movement.”

• The specified audience is an audience that is
primed to interpret the continuous redrawing of an
image as the movement of an object. While this
interpretation can be scaffolded, like any
representational system it is ultimately
conventional.

Fortunately for the designers of videogames, this
representation is a so broadly understood convention that
the specified audience is in some sense “everybody” (one
can make the argument that this representational convention
is supported by features of the human vision system). But
operational logics can partake of interpretive conventions
that are understood by narrow audiences. Consider the
random event resource management logic.

• The abstract process is “given a collection of one
or more labeled numeric values, define a set of
positive and negative numbers each associated
with a label and a sensory representation that will
make use of other operational logics, define a
probability distribution over these numbers, and
non-deterministically select a number according to
the distribution, displaying its associated
representation and adding it to the number
associated with its label.”

• The domain is the representation of random events
within a fictional world that impact the amount of
managed resources.

• The representational strategy says “in order to
represent randomly occurring fictional events
impacting managed resources, associate each
resource with a numeric value, associate ‘good’
fictional events with positive numbers, ‘bad’
fictional events with negative numbers, create a
sensory representation of the fictional event, and
define a probability of the event occurring,
generally associating smaller probabilities with
larger positive and negative resource changes.”

• On the audience interpretive side, this
representation is entirely conventional for players
of simulation games (and thus most videogame
players).

It is possible to now clearly see how both the file system
and riddle examples introduced at the beginning of this
section fail to qualify as operational logics. For the file
system operations, while they provide abstractions useable
by programmers, abstractions that in fact might be used as
part of a process description, they do not participate in the
computational media ecosystem of authorial intention
mediated through a computational representation to an
audience. While one can talk about meaning in the context
of file systems, it is not this kind of meaning making. On
the other hand, while the trope of the riddle is certainly a
representation an author can intend, there is no abstract
process nor representational strategy supporting the riddle.
When the trope of the riddle successfully operates in an IF,
it is because the author has made idiomatic use of many
logics that are conventional in IF, but these idioms are not
yet codified to the point of providing effective authorial
affordances.

 7

In the two examples above, pulling apart the abstract
process from the representational strategy resulted in
awkward, and perhaps overly abstruse-sounding,
descriptions of the processes and strategies. This is
precisely because an operational logic actually binds
process and strategy into a unified whole; the strategy
provides the language for talking about the process. When
you pull the two halves apart, it reveals the hidden, inner
complexity of the union. Especially for logics that are as
deeply conventional in computational media production as
graphical and resource management logics, it can feel as if
the process is intrinsically about the representational
domain. Thus “move objects by continuously redrawing
them” and “random events add and subtract from managed
resources” can feel like unproblematic descriptions of
processes. But processes, on their own, have no intrinsic
representational power (and can thus be quite difficult to
talk about in the abstract). A representational strategy
functions precisely because it provides a way of talking and
thinking about a process. But the original establishment of
this mapping between process and rhetoric takes work.
Fundamental innovation in computational media involves
doing the work of establishing new strategies for mapping
representational effects onto (potentially new) processes.

DISCUSSION
In this paper we have gone to some length to give examples
of operational logics (and examples that aren’t logics),
define the term, and expand on the definition. We do this
not from a love of terminology, but because we believe that
a relatively precise notion of operational logics makes it
possible to discuss important issues with connections
“under the hood” of games. In particular, we believe
operational logics provide one of the most potentially
fruitful ways to bring game studies together with software
studies. We sketch a few directions for possible work of this
sort here.

Operational logics provide a useful analytical tool for
understanding constraints on game mechanics and game
rules, two of the central topics of game studies. (While
these topics are not always clearly distinguished, Sicart [12]
and others define mechanics in relation to player/agent
actions, while rules are more general.) Discussion in game
design and game scholarship often identifies mechanics and
rules as central sites for innovation. But the space of
possible innovation is not free—it is fundamentally
constrained by the operational logics available. This is
because operational logics deeply underwrite mechanics
and rules.

Given this, considering operational logics can clarify what
differentiates certain types of alternative game creation.
Wardrip-Fruin et al's Regime Change (2004) is driven by
the serial-ordering logic of Markov chains, which he argues
is an appropriate logic for textual play. Mateas and Andrew
Stern's Façade (2005) required the development of new
interpersonal logics that could support structures such as its

“affinity game.” Arguably, the definition and development
of new types of logics presents an important alternative to
creating games, commercially or otherwise, that primarily
depend on longstanding spatial and resource management
logics. In undertaking such expansions, some necessary
logics may already have formalized abstract and
implemented processes (further work in textual logics may
draw on computational linguistics) while others may require
novel computational models (e.g., to broaden interpersonal
logics to include friendship or humor).

This is not to say that interesting innovation can’t involve
working within established logics. It is certainly possible to
define interesting new kinds of mechanics and rules on top
of existing logics. In fact, such work can arguably lead to
the production of new logics. Consider Passage (2007) by
Jason Roherer. In this game graphical logics are used as the
basis of spatial mechanics associated with metaphors about
life. For example, collision detection is used to determine
whether the character’s journey will take place with a
partner or alone. This isn’t just part of the fictional world—
solo characters can explore parts of the world that couples
can’t. As time passes, the player character inevitably grows
old and dies. Nick Montfort argues that in Passage
choosing to do things like explore the world, perhaps
searching for hidden treasure, become as much about how
one lives one’s life as about spatial exploration and game
accomplishment [9]. One can imagine such currently-
unusual uses of graphical logics eventually becoming well-
understood, to the point that the underlying abstract
processes become recognized as participating in two kinds
of operational logics: both the current graphical/spatial
logics and another in which the shifting position of
elements on the screen is actually understood as the making
of non-spatial life decisions. This seems unlikely in the
specific case of Passage, but it explains part of what seems
unusual and full of potential about the work.

On a different note, there is a non-obvious issue with the
fact that operational logics are defined in terms of abstract
rather than implemented processes. It raises the specter that
bogus operational logics can be defined which are not
actually underwritten by implementable computational
processes. However, in order to qualify as an abstract
process, there must be an implemented process that meets
the specification of the abstract process. We are not allowed
to cheat by defining an operational logic around “magic”
abstract processes such as “generate the same kinds of
emotional responses to interpersonal interactions that
people do.” Unless an operational logic has actually been
demonstrated to operate by creating a computational media
artifact that achieves the claimed representational effect
using the claimed process and a strategy, then it doesn’t
exist. Once demonstrated, operational logics support a level
of analysis that is safely computational (no cheating),
without having to drop to the level of the code in which the
processes are implemented. This differentiates the approach
from one such as Mark Marino's “Critical Code Studies”

 8

[5], eliminating the need to acquire (rarely available) source
code access. On the other hand, operational logics are more
specific to computational systems than concepts such as
Bogost’s of the “unit operation,” which creates a foundation
for “any medium—poetic, literary, cinematic,
computational” to be “read as a configurative system, an
arrangement of discrete, interlocking units of expressive
meaning” [3]. Instead, operational logics are an
implementation-independent way of talking about system
architectures and their fundamental actions.

Finally, operational logics are also a tool for comparing and
examining individual works. For example, while at the level
of interface actions the mechanics of Façade may seem
similar to those of Joseph Weizenbaum's (1966)
Eliza/Doctor—each supports conversational interaction,
with the player allowed arbitrary textual input—an
examination of the underlying logics reveals a stark
contrast. Eliza/Doctor's conversational logic is one of
transformation, turning each audience statement into its
own reply (though designed to avoid immediate detection).
Façade, on the other hand, interprets audience text as
discourse acts within the game's social space. Further,
looking at the relationships between operational logics
within a system can reveal where interpretive energy is best
spent (and help avoid error). For example, while Janet
Murray (1997) and Espen Aarseth (1997) both understand
the interaction mechanics of the Tale-Spin system, their
interpretations ignore the fact that planbox-based character
simulation is its central operational logic, leading both to
missed opportunities and inaccuracies.3

In short, operational logics can help us see the structure of
games and the field more deeply and broadly, imagine the
future in constructive new ways, and interpret individual
works more accurately. By employing an analytic unit that
cuts across multiple levels of analysis to describe the
relationship between implementation and representation, we
can begin to map the space of possibility for procedural
representation that underlies games and all computational
media work.

3 In particular, Murray critiques Tale-Spin for plot
structures that are too abstract (in fact, it contains no plot
structures) and devotes the next chapter to simulated
characters (but makes no mention of Tale-Spin’s interesting
planning logic for character behavior) [11]. Aarseth, on the
other hand, uses Tale-Spin as an example in an argument
that machines should not be forced to simulate human
narrators, when the absence of simulated narration is a
primary critique of Tale-Spin from those who engage its
operations. Aarseth’s missed opportunity is to consider
Tale-Spin as a step toward the new genres for which he is
calling [1].

REFERENCES
1. Aarseth, E. Cybertext: Perspectives on ergodic

literature. Johns Hopkins University Press, Baltimore,
1997.

2. Ahl, D. Basic Computer Games. Workman Publishing,
New York, 1978.

3. Bogost, I. Unit Operations: An approach to videogame
criticism. MIT Press, Cambridge MA, 2006.

4. Bogost, I. Persuasive Games: The expressive power of
videogames. MIT Press, Cambridge MA, 2007.

5. Marino, M. 2006a. “Critical code studies.” Electronic
Book Review 2006. Available at
www.electronicbookreview.com/thread/electropoetics/c
odology.

6. Mateas, M. “Expressive AI: A semiotic analysis of
machinic affordances.” 3rd Conference on
Computational Semiotics and New Media, University of
Teeside, UK. September 10-12, 2003.

7. Mateas, M. “Making games about people: AI and game
design.” Keynote Speaker, Medi@Terra: Gaming
Realities, Athens, Greece, October 4-8, 2006.

8. Montfort, N. Twisty Little Passages: An approach to
interactive fiction. MIT Press, Cambridge MA, 2003.

9. Montfort, N. “PvP: Portal versus Passage.” Grand Text
Auto 2008. Available at
grandtextauto.org/2008/02/24/pvp-portal-versus-
passage/

10.Montfort, N. and Bogost, I. Racing the Beam. MIT
Press, Cambridge MA, 2009.

11.Murray, J. Hamlet on the Holodeck. Free Press, New
York, 1997.

12.Sicart, M. “Defining game mechanics.” Game Studies 8.
2. Available at gamestudies.org/0802/articles/sicart

13.Wardrip-Fruin, N. “Playable media and textual
instruments.” Dichtung Digital 1, 2005. Available at
http://www.dichtung-digital.com/2005/1/Wardrip-Fruin

14.Wardrip-Fruin, N. “Expressive Processing: On process-
intensive literature and digital media,” PhD dissertation,
Brown University, 2006.

15.Wardrip-Fruin, N. Expressive Processing: Digital
fictions, computer games, and software studies. MIT
Press, Cambridge MA, 2009.

