
Proceedings of DiGRA 2005 Conference: Changing Views – Worlds in Play.
© 2005 Authors & Digital Games Research Association DiGRA. Personal and educational classroom
use of this paper is allowed, commercial use requires specific permission from the author.

A Realistic Reaction System for Modern Video Games

Leif Gruenwoldt, Michael Katchabaw
Department of Computer Science

The University of Western Ontario
London, Ontario, Canada

Tel: +1 519-661-4059
lwgruenw@gaul.csd.uwo.ca, katchab@csd.uwo.ca

Stephen Danton
Horseplay Studios

Seattle, Washington, USA
Tel: +1 206-956-4689

stephen_m_danton@hotmail.com

ABSTRACT
The substantial growth of the video game industry has fueled a search for new technologies and
methodologies for providing rich and rewarding experiences for players of modern video games.
Many of the most popular games offer visually rich and compelling environments to support a
higher level of believability and immersion for the players. Recent generations of games have
also offered great advancements in areas like realistic physics, engaging audio, and believable
artificial intelligence.

Our current work, however, focuses on oft-overlooked and neglected area of development–
providing societal-like relationships between the characters and objects of the game world. A
dynamic and reactive relationship system opens up new directions for interaction within a game
world to be explored. In this paper, we discuss our work on the development of a realistic
reaction system to support relationship modeling and representation in modern video games, and
outline our experiences in using it to date.

Keywords
Relationship modeling, relationship networks, relationships in video games

INTRODUCTION
With the explosive growth in the game industry, game developers are constantly seeking new
methods of creating a more immersive and believable gaming experience for players of their
games, both to remain competitive and to provide more satisfaction and enjoyment to their
players. This has led to the development of more life-like graphics and audio systems, improved
individual artificial intelligence, realistic physics engines, and a variety of other technologies that
have greatly advanced the state-of-the-art in video games.

One thing that modern video games still lack, however, is a sense of relationship or social
network binding the characters and objects in the game world to one another. This sentiment is
expressed eloquently in [5], and elsewhere. Without this, game developers have to largely rely
upon scripted behaviours and events to mimic realistic character reactions to events that occur in
the game world. Since a developer can only script so much, and a game is stuck with whatever
scripts it ships with, this method is ultimately limited. Consequently, players often sense a
disconnection in the game world that leads to a break in immersion and a loss of believability.

To address this issue, our current work investigates the development of a Realistic Reaction
System (RRS) for modern video games. This system models and maintains the relationships
between the various characters and objects in the game world over time dynamically, and
provides methods by which characters can query the relationship network to formulate
appropriate reactions in behaviour, dialogue, and so on. In the end, RRS provides game
characters the information they need to respond appropriately to the situations with which they
are presented.

This paper presents our initial work in developing and using RRS. We begin with a general
overview of relationships and relationship networks in general. Following this, we provide
architectural details of RRS, and outline its implementation using Epic’s Unreal Engine [3]. We
then discuss our experiences with using RRS in an Unreal game mod [1], and its use in our
Neomancer project [2,4], currently under development. We finally conclude the paper with a
summary, and a discussion of directions for future work in this area.

RELATIONSHIPS AND THE RELATIONSHIP NETWORK
The relationship network forms the infrastructure for RRS. This network models all of the
relationships between all of the characters, groups of characters, and objects of interest in the
game world. One can envision this network as a graph-like structure, with the characters,
groups, and objects as nodes in the graph, and the various relationships that exist between them
as edges (directed or undirected, depending on the relationship).

There are numerous possible types of relationships that exist between entities in the relationship
network. Each of these types can have subtypes, and so on, resulting in a hierarchical tree of
relationship types. For example, main types of relationships can include: emotional, familial,
business, leadership, ownership, membership, and so on. If we were to expand the membership
branch, for example, there exist relationships to denote belonging to groups in the game, such as
ethnicity, social caste, profession, community residence, and so on. This hierarchy can be easily
expanded with additional types and sub-types as necessary.

Furthermore, each relationship has several attributes. These attributes include origin, history,
regularity, strength, polarity, and validity. Relationship-specific attributes can also be assigned
where appropriate.

With the relationship network, relationship types, and relationship attributes, RRS has a great
deal of expressive power at its disposal. Consider the example relationship network shown in
Figure 1 below.

Figure 1: Example relationship network

In this example, the focal point of the network is a waitress working in a bar. She has direct
relationships established between various objects, characters, and groups in the game world, such
as objects in the bar, other workers in the bar, her home, her brother, and the game player.
Through these entities, she has indirect relationships with other entities, such as her brother’s
girlfriend. Each of these relationships can have types and values. As one example, she might
find the jewelry and furniture in her home to be more valuable than bar objects, as she is in an
ownership relationship with the objects in her house, but not with those in the bar. As another
example, she might have emotional relationships with both the bouncer in the bar and her ex-
husband, although she might feel affection for the bouncer and not feel very fondly toward her
ex-husband.

Affecting Relationships
Relationships in the relationship network can be affected in numerous ways. The most direct
method is by the filtered input of game events into the network. Once they are passed on to the
relationship network, events cause either the creation of new relationships between entities, the
replacement of one relationship by another, the modification of existing relationship attributes, or

the removal of a relationship from a system. To maintain history, however, it is likely best to
mark a relationship as invalid instead of completely removing it from the network.
Revisiting the example scenario depicted in Figure 1, a patron could become disruptive in the bar
and damaging the tables and other objects in the bar. This would create a rather negative
relationship with the waitress, due to her standing relationship with the bar objects. If her ex-
husband came to her rescue and expelled the unruly patron, this could change or replace the
waitress’s relationship with him to a more positive relationship, and might even affect the
budding relationship she was building with the bouncer.

Relationships are also affected by game events indirectly, by their propagation through the
relationship network. Depending on the nature of the event and how it affects entities in the
network directly, the event can be felt by other related entities. How this indirect influence
affects other entities depends on the entities in question and the relationships that exist between
them. Propagation can occur when two entities directly interact with one another, for example
in two characters having a dialog. Propagation can also spread along relationships without direct
contact over time depending on the initiating event, much in the same way that reputation and
notoriety spread throughout a community.

As an example of propagation, we revisit the example scenario in Figure 1 once more. If we
suppose that the Fat Dragon Mercenaries, a group with which the bouncer is associated, begin to
terrorize the residents of the town in which the bar is situated, news of this could propagate back
to the waitress. Since the bouncer is associated with this group, her relationship with him could
be changed for the worse, or replaced with a different one entirely, if we suppose that the
mercenaries killed her brother in the process.

Time also affects relationships. Given enough time, relationships drift towards a neutral state, in
the absence of events or interactions that would otherwise act to strengthen them. Relationships,
in essence, must be fed and nurtured for them to endure.

Querying Relationships and Formulating Reactions
In order to produce effective responses within a game, the relationship network within RRS must
be queried. In other words, game entities such as characters must be able to search the
relationship network, uncover relevant relationships and relationship attributes, and use this
information to formulate the correct behaviour, dialogue, and so on for the current situation.
Other game entities may query the relationship network to formulate context appropriate content,
such as missions or quests that reflect the current state of the game and the social network that
exists within it.

To support this ability, a simple querying and matching facility has been defined. This provides
the game ready and efficient access to relationship information whenever it is required. This is
discussed further in the next section.

RRS ARCHITECTURE
The architecture required to facilitate the RRS consists of persistent descriptions of relations on
disk, loading and internally representing the data in a useful manner, and lastly associating the

data with existing game world objects or actors. This broad architecture is depicted below in
Figure 2.

Relation Game
World

Actor

Actor
Relationship

Manager

represents

represents

Persistent
Relation Data

File system

Inside Game

Relation
Entity

Relation
Entity

Figure 2: Architectural overview of RRS and its connection with the game world

The persistent relation data residing on disk contains all of the core relationship data in detail;
this data can either be stored in a flat file, or some kind of database. The relationships themselves
are maintained and controlled by a relationship manager. The relationship manager provides the
ability to load relationship data from persistent storage, and synchronize relationship data
throughout the game as necessary. The relationship manager also provides the facilities to
create, update, delete, modify, and query individual relationships or relationship attributes.

At the core of each relationship are relation entities. These entities can be characters, objects, or
groups from the game world. Consequently, each relation entity is linked back to the
corresponding actor from the game world. Relation entities can be created dynamically to reflect
new or previously unencountered actors in the game world, as the relationship manager deems
appropriate. As the game is initialized and progresses, the relationship manager constructs the
required relationships using these relation entities, as discussed below.

Modeling of Relations
Relations have been modeled to recreate various relation types in a manner similar to the real
world, capturing a variety of relationship types and subtypes as discussed earlier. A relation is
used to represent the association of one entity with another. A relation is described by both a
perception and a description. The perception is used to represent all relationship attributes
pertaining to how a particular entity views the relation in question. The perception is, in essence,
the relation entity’s opinion of their relationship with the other entity in question. For example,
continuing the scenario depicted in Figure 1, the waitress initially might have perceived that her
relationship with the bouncer at the bar was one of love, when in fact it may not have been. The
description of the relationship includes only the hard, solid facts surrounding the relationship in

question. For example, the description of the waitress’s relationship with the bouncer could
indicate that they have known each other for 3 years and that they meet regularly on a daily basis
at work.
Figure 3 illustrates the scenario in which one entity is aware of the existence of another entity but
not necessarily vice-versa, also referred to as a semi-relation in this work. Following the example
from Figure 1, if the waitress was to observe the player doing something heroic, she would
establish a semi-relation of admiration with the player, even if the player was unaware of the
existence of the waitress in this case.

Entity1 Relation Perception

Entity2 Description

Has

With

Described by

Described by

1 * 1 1

1

11

Figure 3: A one way relationship, also known as a semi-relation

Figure 4 illustrates the scenario in which the two entities are both aware of the existence of each
other. This is called a full-relation in this work. This requires the use of two relation objects, two
perceptions, but just a single description. There are two perceptions in this model because each
entity is entitled to its own perception of the other entity in the relation. As you will notice there
is a common description though because facts contained, like the duration of the relationship and
historical events in the relationship, are unambiguous. (The perception of these facts might
differ between the entities in question, but the description contains the facts independent of these
perceptions.) Continuing the above example from Figure 1, the waitress might now have a
perception that she dislikes the bouncer due to his association with the Fat Dragon Mercenaries,
even though he has a different perception and still loves her. The factual description of the
relationship would be the same, however.

Entity1 Relation Perception

Entity2 Relation Perception

Description

Figure 4: A full-relation with shared description and unique perceptions

An advantage to modeling the relation as two separate relation objects is that each entity’s
perception can be hidden from the point of view of the other side of the relation. Consider the
case in which the artificial intelligence controller for Entity1 is reacting to an event involving
Entity2. Entity 1 should only act based on its own perception and the common description
attributes of the relation.

Extending the System
The architecture described above is quite flexible and allows complex relationships to be
modeled quite effectively within a game. RRS can easily be used to represent semi and full-
relations, relations between characters and objects, and relations between groups. This latter
ability can be quite useful for modeling the relationships between collections of entities.
Following the example from Figure 1, the guards group can have an on-going hostility with the
Fat Dragon Mercenaries, providing a default relationship for all members of the group until
specific relationships are added for individual members of those groups.

The architecture is also object-oriented, allowing classes of entities, relations, perceptions,
descriptions, and relationship attributes to be created and specialized for the needs of different
games. This allows RRS to be implemented for use in a particular game engine with a basic
library of classes provided for modeling common types of relationships. At the same time, this
also provides the ability to specialize and extend the system for use in particular games that make
use of that engine. This was the case when we developed a prototype of RRS, as discussed in
detail in the next section.

IMPLEMENTATION AND EXPERIENCE WITH RRS
A prototype of RRS has been developed for Epic’s Unreal Engine [3] in UnrealScript.
UnrealScript has many of the features of a traditional object-oriented language, providing
excellent support for extensibility for the future. Games built on the Unreal Engine can take
advantage of RRS by either extending a new game type added to support RRS, or by embedding
the appropriate RRS initialization hooks into an existing game type.

In addition, the RRS implementation in the Unreal Engine provides additional console
commands to support manipulation of relationships manually from within the game. This allows
game developers and designers to add relationship information during production from within
the game itself, allowing easy debugging and creation of content.

After development, initial validation of RRS took the form of individual test cases. More
extensive validation took the form of modifying the existing LawDogs game modification to
Unreal Tournament 2003/2004 [1] to support RRS. LawDogs was chosen primarily because its
setting included a bar scene, which follows in line closely to the example used in our example
relationship scenario discussed throughout this paper, and introduced originally in [2].

Figures 5 and 6 demonstrate the relationship facilities in RRS in action. To highlight the
relationships present in the system, coloured lines were drawn to represent relationships, and text
was output at the bottom of the game display. This information would not be displayed during
an actual game, however, and would only be tracked and maintained internally. In Figure 5, for

example, we can observe that the cowboy patron has an emotional relationship established with
the waitress in the scene, indicating that he likes her. Figure 6, on the other hand, indicates that
the waitress has a different perception of their relationship. In fact, she intensely dislikes the
cowboy patron.

Figure 5: A demonstration of a “like” relationship facilitated by RRS.

Figure 6: A demonstration of a “hate” relationship facilitated by RRS.

RRS is currently being deployed for use in the Neomancer project [2,4], a joint development
effort between the University of Western Ontario and Seneca College. Efforts in this project are
currently being directed towards integrating RRS functionality, providing RRS with the
contextual information required to build and maintain relationships, and using relationship
information provided by RRS to drive character behaviours.

CONCLUDING REMARKS
By capturing game relationships and facilitating more appropriate character responses, our
Realistic Reaction System can provide more immersive and compelling gameplay in modern
video games. Experimentation with an Unreal-based implementation of RRS to date has proven
successful, and demonstrates promise for future development efforts.

In the future, we plan to complete our current integration efforts and port RRS to other games
and platforms for further research and development. To meet stringent performance constraints
we further plan to investigate techniques to optimize RRS and minimize run-time overhead in
manipulating and querying relationships in the system. Finally, we also intend to extend our
library of pre-defined relationships and relationship attributes to allow RRS to express a wider
range of relationships by default.

REFERENCES
1. G. Castaneda, et al. LawDogs UT2003-UT2004 Modification. Available from project home page

online at http://www.planetunreal.com/lawdogs. February 2005.
2. S. Danton. Neomancer Game Design Document. Unpublished manuscript. November 2004.
3. Epic Games. Unreal Engine 2, Patch-level 3339. November 2004.
4. M. Katchabaw, D. Elliott, and S. Danton. “Neomancer: An Exercise in Interdisciplinary Academic

Game Development”. In the Proceedings of the DiGRA 2005 Conference: Changing Views –
Worlds in Play. Vancouver, Canada, June 2005.

5. G. Lawson. “Stop Relying on Cognitive Science In Game Design - Use Social Science”. In
Gamasutra Letter to the Editor (available at http://www.gamasutra.com/php-
bin/letter_display.php?letter_id=647). December 2003.

