DiGRA/FDG '16 - Proceedings of the First International Joint Conference of DiGRA and FDG
Dundee, Scotland: Digital Games Research Association and Society for the Advancement of the Science of Digital Games, August, 2016
Number: 1
Volume: 13
ISBN / ISNN: ISSN 2342-9666
The procedural generation of video game levels has existed for at least 30 years, but only recently have machine learning approaches been used to generate levels without specifying the rules for generation. A number of these have looked at platformer levels as a sequence of characters and performed generation using Markov chains. In this paper we examine the use of Long Short-Term Memory recurrent neural networks (LSTMs) for the purpose of generating levels trained from a corpus of Super Mario Bros. levels. We analyze a number of different data representations and how the generated levels fit into the space of human authored Super Mario Bros. levels.