Digital Library Keyword Archives
Recurrent Neural Networks
- 1 article or paper
 
Summerville Adam J. Mateas Michael
2016 DiGRA/FDG '16 - Proceedings of the First International Joint Conference of DiGRA and FDG
Super Mario as a String: Platformer Level Generation Via LSTMs
Summerville Adam J. Mateas Michael
2016 DiGRA/FDG '16 - Proceedings of the First International Joint Conference of DiGRA and FDG
The procedural generation of video game levels has existed for at least 30 years, but only recently have machine learning approaches been used to generate levels without specifying the rules for generation. A number of these have looked at platformer levels as a sequence of characters and performed generation using Markov chains. In this paper we examine the use of Long Short-Term Memory recurrent neural networks (LSTMs) for the purpose of generating levels trained from a corpus of Super Mario Bros. levels. We analyze a number of different data representations and how the generated levels fit into the space of human authored Super Mario Bros. levels.